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TOPOLOGY OF FUNCTION SPACES

Andrew Marsh, PhD

University of Pittsburgh, 2004

This dissertation is a study of the relationship between a topological space X and various

higher–order objects that we can associate withX. In particular the focus is on C(X), the set

of all continuous real–valued functions on X endowed with the topology of pointwise conver-

gence, the compact–open topology and an admissible topology. The topological properties

of continuous function universals and zero set universals are also examined. The topological

properties studied can be divided into three types (i) compactness type properties, (ii) chain

conditions and (iii) sequential type properties.

The dissertation begins with some general results on universals describing methods of

constructing universals. The compactness type properties of universals are investigated

and it is shown that the class of metric spaces can be characterised as those with a zero

set universal parametrised by a σ–compact space. It is shown that for a space to have a

Lindelof–Σ zero set universal the space must have a σ–disjoint basis.

A study of chain conditions in Ck(X) and Cp(X) is undertaken, giving necessary and

sufficient conditions on a space X such that Cp(X) has calibre (κ, λ, µ), with a similar result

obtained for the Ck(X) case. Extending known results on compact spaces it is shown that if a

space X is ω–bounded and Ck(X) has the countable chain condition then X must be metric.

The classic problem of the productivity of the countable chain condition is investigated in

the Ck setting and it is demonstrated that this property is productive if the underlying space

is zero–dimensional. Sufficient conditions are given for a space to have a continuous function

universal parametrised by a separable space, ccc space or space with calibre ω1.

An investigation of the sequential separability of function spaces and products is under-
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taken. The main results include a complete characterisation of those spaces such that Cp(X)

is sequentially separable and a characterisation of those spaces such that Cp(X) is strongly

sequentially separable.
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1.0 INTRODUCTION

In this thesis we will examine the topological properties of various “higher–order” objects

that we can associate with a given topological space. For example if we take the set of all

continuous real–valued functions on a space X then we can create a number of new spaces

by topologising this set in different ways. In the case of universals we attempt to find a space

that in some appropriate sense parametrises all the objects of certain class, for example all

the zero sets of a space X. We are mainly interested in how the topological properties of

the higher–order object relate to the topological properties of the underlying space.

The general questions we ask and approach we take are similar to those of Cp–Theory.

Question 1. If the higher order object (i.e. function space or universal) satisfies some

given property what can we imply about the underlying space?

Question 2. If the underlying space satisfies some given property what can we imply

about the higher order object?

The collection of properties we consider can be broadly divided into two categories: (i)

properties related to separability, such as sequential separability or chain conditions, (ii)

properties related to compactness such as σ–compactness or the Lindelof property. Ulti-

mately we seek to obtain a complete characterisation of when a given higher–order object

associated with a space has a given topological property. An examination of the results of

Cp–Theory makes one thing clear: certain properties will be easy to deal with while oth-

ers will be extremely complex. For example we can characterise those spaces X such that

Cp(X) is separable as those with a coarser separable metric topology, while there is no known

characterisation of when Cp(X) is Lindelof.
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1.1 NOTATION

Most of our notation is standard and follows Engelking in [7] and Kunen in [20]. Unless

otherwise stated all spaces will be Tychonoff. This certainly seems the natural class of

spaces to deal with when one considers function spaces as it asserts the existence of many

continuous real–valued functions. There is an example of a T3 space X such that the only

continuous real–valued functions on X are the constant functions demonstrating that the

class of T3 spaces is somewhat deficient when studying function spaces.

Definitions of any topological properties that are not defined in this thesis can be found

in [7]. Many of the results in this thesis can be found in [10, 11, 8]. As these are joint papers

we have tried to include only those results that are due to the author. However in certain

circumstances other results from these papers are needed and we make it clear throughout

this thesis if a result is not the work of the author.

We think of each ordinal α as the set of all ordinals preceeding α, and for this reason

we may write β ∈ α instead of β < α. This applies to finite ordinals and so for example

2 = {0, 1} and n+1 = {0, 1, . . . , n}. Every cardinal is the least ordinal of a given cardinality

and so for example we may write ω1 instead of ℵ1.

If X is a topological space we will use C(X) to denote the set of all continuous real–

valued functions on X. Whenever we need to specify the topology τ we will write C(X, τ)

instead of C(X). A zero–set of X is some Z ⊂ X such that there exists f ∈ C(X) with

Z = f−1({0}) and a co–zero set is the complement of a zero–set.. An Fσ subset of X is a

set that can be written as the countable union of closed subsets of X. We say Z is a regular

Fσ set if there exist open sets Un for each n ∈ ω such that Z =
⋃

n∈ω Un =
⋃

n∈ω Un.

Given two functions f and g if we write f = g we mean that the domain of f is the same

as the domain of g, and for every x in this domain f(x) = g(x). We will use P(X) to denote

the power set of X.
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1.2 OUTLINE AND STRUCTURE OF THESIS

Chapter 2 of this thesis deals with some general results on function spaces and universals that

will be needed when studying specific topological properties of these objects. With the aim

of making this work as self–contained as possible we have included some well–known results

about Cp(X) and Ck(X). The rest of the results from this section are new and address the

problem of constructing universals.

The main body of the work is divided up according to topological property. Chapter

3 deals with compactness, σ–compactness and the Lindelof–Σ property in universals. In

Chapter 4 we deal with chain conditions in function spaces and universals, giving a complete

characterisation of when Cp(X) or Ck(X) has a given chain condition. Finally Chapter 5

contains our results on the (strong) sequential separability of Cp(X). At the very end, in

Chapter 6, we collect the unsolved problems.
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2.0 FUNCTION SPACES AND UNIVERSALS

The study of function spaces began in the 19th century with attempts to understand the

convergence of sequences of functions. The idea is to view the collection of all functions in

a certain class, such as all continuous real–valued functions on a space X, as a space in its

own right. By varying the topology on this space of functions we can change what it means

for a sequence of functions to converge. We focus in particular on two topologies, one giving

pointwise convergence of functions the other convergence on compact sets.

With universals we take the same higher–order approach. A universal is a space that

in some appropriate sense parametrises a collection of objects associated with a given topo-

logical space. For example we might be interested in parametrising all the open subsets of

R with some space. In general we will try to find the nicest possible parametrising space.

The study of universals began with the examination of the length of the Borel hierarchy.

Universals for the Borel sets were used to calculate this length. In more recent years Gartside

and others have looked at universals for many other types of objects, such as zero–sets, Fσ

sets and continuous real–valued functions (see [10, 12, 13, 14]).

Here we collect many of the fundamental results regarding function spaces and universals

that we will need in the rest of the thesis. The results on the space Cp(X) are well known

and can be found in [2]. The two results, Lemma 6 and Lemma 8 have probably appeared

before. However we have been unable to find either a statement or proof of either in the

literature. As results later in this thesis rely on these theorems and as the proof of Lemma

6 in particular is non–trivial we give full proofs of Lemma 6 and Lemma 8.
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2.1 FUNCTION SPACES

If we fix a space X we can view the set C(X) as a topological space in a number of natural

ways. In this section we will define two topologies (i) the topology of pointwise conver-

gence and (ii) the topology of compact convergence. In addition we will discuss the idea

of an admissible topology on C(X). First some notation that will allow us to define these

topologies.

If A ⊂ X and B ⊂ R then we define [A,B] ⊂ C(X) and [A,B]′ ⊂ RX as

[A,B] = {f : f ∈ C(X), f [A] ⊂ B},

[A,B]′ = {f : f ∈ RX , f [A] ⊂ B}.

If A = 〈A0, . . . , An〉 consists of subsets of X and B = 〈B0, . . . , Bn〉 consists of subsets of

R then we define W (A,B) ⊂ C(X) and W ′(A,B) ⊂ RX as

W (A,B) =
⋂

{[Ai, Bi] : i ≤ n},

W ′(A,B) =
⋂

{[Ai, Bi]
′ : i ≤ n}.

2.1.1 The space Cp(X)

We use Cp(X) to denote the space with underlying set C(X) and the topology of pointwise

convergence. If there is a need to specify the topology τ on X we will write Cp(X, τ).

This topology has as a subbasis {[{x}, U ] : x ∈ X,U ⊂ R, U is open}. For convenience

we will write [x, U ] or W (〈x0, . . . , xn〉, 〈U0, . . . , Un〉) when in fact we should write [{x}, U ]

or W (〈{x0}, . . . , {xn}〉, 〈U0, . . . , Un〉). The space Cp(X) can be viewed as a subspace of the

Tychonoff product RX . The study of the topological properties of Cp(X) has been ongoing

for many years. See [2] for an introduction to this area and proofs of the results that

we will mention in this section. In addition the study of Cp(X) is closely related to the

study of Banach spaces in their weak topology, every Banach space in its weak topology is

homeomorphic to a closed subspace of some Cp(X).

5



Another way to specify the topology on Cp(X) is as follows. If f ∈ C(X), ε > 0 and

x0, . . . , xn ∈ X then we define

B(f, x0, . . . , xn, ε) = {g ∈ C(X) : ∀i ≤ n|f(xi) − g(xi)| < ε}.

We can generate the topology on Cp(X) by taking the collection of all such B(f, x0, . . . , xn, ε)

to be a basis.

The following theorem gives a further justification for restricting ourselves to the class

of Tychonoff spaces.

Theorem 1 If X is a Tychonoff space then so is Cp(X).

Of course the space Cp(X) has an algebraic structure in addition to its topology. We

can define f + g for f, g ∈ C(X) by (f + g)(x) = f(x) + g(x) for all x ∈ X. Similarly

we can multiply two functions f, g to get fg where (fg)(x) = f(x)g(x). Defining addition

and multiplication of functions in this way makes Cp(X) a topological ring. One of the key

results of Cp–Theory is the following theorem that shows that the combined topological and

algebraic structure of Cp(X) completely determines the topology of X.

Theorem 2 [J. Nagata] If the topological rings Cp(X) and Cp(Y ) are topologically isomor-

phic then the spaces X and Y are homeomorphic.

However the topology of Cp(X) does not suffice to determine X. In fact even if we view

Cp(X) as a topological group with addition as the group operation this is not enough. It was

shown by Okunev that Cp(R) and Cp(X) where X is the disjoint sum of ω–many copies of R

are linearly homeomorphic. In studying how the properties of X are related to the properties

of Cp(X) we are particularly interested in seeing which properties of X are decided by the

topology of Cp(X) and which are decided by the topology plus some algebraic structure.

There is a canonical way in which to embed X into CpCp(X) that can be very useful.

Note that if we fix X then each x ∈ X can be viewed as a continuous function gx on Cp(X)

by setting gx(f) = f(x) for each f ∈ Cp(X). Moreover we can embed X in CpCp(X) in this

way.

Theorem 3 The function ψ : X → CpCp(X) defined by ψ(x) = gx for each x ∈ X is an

embedding.
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There is an obvious relationship between Cp(X)2 and Cp(X⊕X) as shown in the following

theorem.

Theorem 4 For every space X there is a canonical homeomorphism between Cp(X)2 and

Cp(X ⊕X).

We finish with the following theorem.

Theorem 5 Let τ and σ be two topologies on a set X and assume that σ ⊂ τ . Then

D = {f ∈ Cp(X, τ) : f is σ–continuous} is dense in Cp(X, τ).

2.1.2 The space Ck(X)

A topology finer than that of Cp(X) is the compact–open topology on C(X). It arises as a

natural generalisation of the metric that we can define on C(X) when X is compact. While

this topology will give us fewer compact sets it does improve the metric properties of the

function space.

Fixing a space X we define the space Ck(X) to have as its underlying set C(X) and

a subbasis for the topology {[K,U ] : K ⊂ X,U ⊂ R, K is compact, U is open}. A typical

basic open set will be W (K,U) where K = 〈K0, . . . , Kn〉 consists of compact subsets of X

and U = 〈U0, . . . , Un〉 consists of basic open subsets of R.

As with Cp(X) we can define a basis where each basic open set depends on a function f

and ε > 0. Fixing compact K ⊂ X we define

B(f,K, ε) = {g : ∀x ∈ K|f(x) − g(x)| < ε}.

Just as for Cp(X) the collection of all such basic open sets generates the topology on Ck(X).

We will now define a notion, the type of a basic open set, that will be useful when dealing

with this topology. First we define, for every collection K = 〈K0, . . . , Kn〉 of compact subsets

of X, a function tK called the type of K. For each A ⊂ n + 1 we define tK(A) = 1 if⋂
i∈AKi 6= ∅ and tK(A) = 0 if

⋂
i∈AKi = ∅. In this way we define tK : P(n + 1) → 2. If

B = W (K,U) is a basic open subset of Ck(X) then we define the type of B to be the type

of K i.e. tK.

7



We say that K is of linear type if and only if for all i, j ≤ n we have Kj ∩Ki 6= ∅ implies

that |i− j| = 1. We say that K is of discrete type if and only if for all i, j ≤ n with i 6= j we

have Kj ∩Ki = ∅, and we will use dn to denote this discrete type.

Our first theorem shows that we get basic open subsets of all types.

Theorem 6 Let X be a Tychonoff space. Let K = 〈Ki : i ≤ n〉 consist of subsets of X and

U = 〈Ui : i ≤ n〉 be a collection of basic open subsets of R. If there exists f ′ ∈ W ′(K,U) and

either (i) each Ki is compact or (ii) each Ki is a zero–set, then there exists f ∈ W (K,U).

Before we prove this theorem a few observations are in order. At first glance it would

appear that we could prove this by repeated applications of Urysohn’s Lemma, recursively

defining functions fi for each i ≤ n such that fi[Kj] ⊂ Uj when j ≤ i. However this approach

seems to create some difficulties, so we need to take a similar but more complicated approach.

The following lemma will simplify this proof.

Lemma 7 Let K = 〈Ki : i ≤ n〉 consist of subsets of X. Define EA =
⋂

j∈AKj \
⋃

j 6∈AKj

and for each A ⊂ n + 1 define o(A) = |(n + 1) \ A|. Let I ⊂ P(n + 1) satisfy: there exists

k ≤ n such that o(A) ≤ k+ 1 for all A ∈ I and if o(A) ≤ k then A ∈ I (we say that such an

I is downward closed). Then
⋃
{EA : A ∈ I} =

⋃
{
⋂

j∈AKj : A ∈ I}.

Proof.

Now we are ready to prove Theorem 6

Proof. We will only give the proof for the case (i) where each Ki is compact. Case (ii)

can be proved in an almost identical fashion.

Let K and U be as in the statement of the lemma case (i). Assume that there exists

some f ′ ∈ W ′(K,U). We will construct f ∈ W (K,U). For each i ≤ n we will recursively

define a continuous function fi satisfying: for all A ⊂ n + 1 such that o(A) ≤ i and for all

x ∈ EA we have hi(x) ∈
⋂
{Uj : j ∈ A}. This will suffice as defining f = fn we must have

that f ∈ W (K,U).

To construct f0: there is only one A ⊂ n + 1 such that o(A) = 0, that is A = n + 1. If

EA 6= ∅ then we can choose r0 ∈
⋂
U . We define a function f0 by setting for each x ∈ X

that f0(x) = r0. If EA = ∅ then any choice of f0 will do.

Assume that for some k < n and for all i ≤ k we have the required function fi.

8



To construct fk+1 : Let 〈A0, . . . , Al〉 be an ordering of the set {A : o(a) = |k + 1|}. We

claim that for each s ≤ l we can recursively define a continuous function f s
k+1 satisfying: (i)

for all A ⊂ n + 1 such that o(A) ≤ k and for all x ∈ EA we have f s
k+1(x) ∈

⋂
{Uj : j ∈ A}

and (ii) for all i ≤ s and for all x ∈ EAi
we have f s

k+1(x) ∈
⋂
{Uj : j ∈ Ai}. Then defining

fk+1 = f l
k+1 we will have constructed the required fk+1.

All that remains to be shown is that the claim is true. Let f−1
k+1 = fk. Assume that for

some s < l and all i ≤ s we have defined the required f i
k+1. Let Zs+1

k+1 = {x : ∃j ≤ n(x ∈

Kj ∧ f s
k+1(x) 6∈ Uj)} and note that Zs+1

k+1 is a compact set. To see this we can rewrite Zs+1
k+1 as

Zs+1
k+1 =

⋃
j≤n

(Kj ∩ (f s
k+1)

−1(R \ Uj)).

To define hs+1
k+1: if EAs+1 ∩Zs+1

k+1 = ∅ then let f s+1
k+1 = f s

k+1 and note that this function satisfies

(i) and (ii) as described in the previous paragraph. If not then find rs+1
k+1 ∈

⋂
{Uj : j ∈ As+1}.

By Lemma 7 the set
⋃
{EA : o(A) ≤ k}∪

⋃
{EAi

: i ≤ s} is compact and from the definitions

is disjoint from Zs+1
k+1.

We can now find a continuous function ps+1
k+1 such that ps+1

k+1 � Zs+1
k+1 = 1 and ps+1

k+1 �

(
⋃
{EA : o(A) ≤ k} ∪

⋃
{EAi

: i ≤ s}) = 0 and ps+1
k+1[X] ⊂ [0, 1].

We define the function f s+1
k+1 by setting for each x ∈ X that f s+1

k+1(x) = f s
k+1(x) −

f s
k+1(x)p

s+1
k+1(x) + rs+1

k+1p
s+1
k+1(x). This function is certainly continuous. We must check that it

satisfies (i) and (ii) as described earlier.

Fix A such that o(A) ≤ k and x ∈ EA. Then f s+1
k+1(x) = hs

k+1(x) ∈
⋂
{Uj : v ∈ A} and

so (i) is satisfied. Fix i ≤ s and x ∈ Ei. Again f s+1
k+1(x) = f s

k+1(x) ∈
⋂
{Uj : j ∈ A}. Finally

look at x ∈ EAs+1 . If x ∈ Zs+1
k+1 then f s+1

k+1(x) = rs+1
k+1 ∈

⋂
{Uj : j ∈ As+1}. If x 6∈ Zs+1

k+1 then

f s
k+1(x) ∈

⋂
{Uj : j ∈ As+1}. Defining a = min{f s

k+1(x), r
s+1
k+1} and b = max{f s

k+1(x), r
s+1
k+1}

we get that f s+1
k+1 ∈ [a, b] ⊂

⋂
{Uj : j ∈ As+1}, completing our proof that (ii) is satisfied.

Our next theorem shows that we don’t in fact need all types of basic open sets to have

a basis.

Theorem 8 Let X be Tychonoff. Then {W (K,U) : K is of linear type} forms a basis for

Ck(X).
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Proof. Fix a function f , compact set K and n > 0. Assume without loss of generality

that f [K] ⊂ [0, 1]. We will find a collection C of compact subsets of X of linear type and a

collection U of basic open subsets of R such that

f ∈ W (C,U) ⊂ {g : ∀x ∈ K|g(x) − f(x)| < 1

n
}.

Let Ci = f−1[ i−1
2n
, i

2n
] for each i = 1, . . . , 2n and let Ui = ( i−1

2n
+ ε, i

2n
+ ε) where ε < 1

4n
.

Let C = 〈C1, . . . , C2n〉. It is easily verified that C is of linear type. That f ∈ W (C,U) follows

directly from the definition of C and U . We will check that for all g ∈ W (C,U) and x ∈ K

we have |g(x) − f(x)| < 1
n
.

Fix such a g and x. Now x ∈ Ci for at least one i. We know that g(x) ∈ ( i−1
2n

− ε, i
2n

+ ε)

and that f(x) ∈ [ i−1
2n
, i

2n
]. So

|f(x) − g(x)| ≤ max{|i− 1

2n
− (

i

2n
+ ε)|, | i

2n
− (

i− 1

2n
− ε)|}

≤ 1

2n
+ ε ≤ 3

4n
.

We have theorems analogous to Theorem 1, Theorem 4 and Theorem 5 for Ck(X).

Theorem 9 If X is a Tychonoff space then so is Ck(X).

Theorem 10 For every space X there is a canonical homeomorphism between Ck(X)2 and

Ck(X ⊕X).

Theorem 11 Let τ and σ be two topologies on a set X and assume that σ ⊂ τ . Then

D = {f ∈ Ck(X, τ) : f is σ–continuous} is dense in Ck(X, τ).
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2.1.3 Admissible topologies for C(X)

The study of admissible topologies on C(X) began with Arens and Dugundji in [1]. A

topology τ on C(X) is admissible if and only if the evaluation map e : X × (C(X), τ) → R

defined as e(x, f) = f(x) for each x ∈ X, f ∈ C(X) is continuous. In [1] it is shown that the

topology on Ck(X) is an admissible topology if and only if X is locally compact. In the case

where X is not locally compact we may still seek an admissible topology on C(X). Although

of course simply giving the set C(X) the discrete topology will give us an admissible topology

we seek coarser topologies as this will give the space nicer global properties and yield more

compact sets. We are somewhat limited as in [1] it is shown that any admissible topology

must be finer that the topology on Ck(X).

One of the most appealing aspects of an admissible topology τ is that the space (C(X), τ)

and the continuous function e parametrise every continuous real–valued function on X. In

this thesis we take this idea further by examining continuous function universals and demon-

strating that admissible topologies are just special cases of continuous function universals.

2.2 SET AND FUNCTION UNIVERSALS

Let us assume that we have a space X and associated with that set we have a collection

of objects T (X). For example T (X) might be all open subsets of X. A universal for this

collection of objects will consist of a space Y and an object in T (X × Y ) that in some

appropriate sense parametrises T (X). More specifically we can define a continuous function

universal as follows.

Definition 12 Given a space X we say that a space Y parametrises a continuous function

universal for X via the function F if F : X × Y → R is continuous and for any continuous

f : X → R there exists some y ∈ Y such that F (x, y) = f(x) for all x ∈ X. We will use F y

to denote the corresponding function on X.

It is clear that if τ is an admissible topology on C(X) then the space (C(X), τ) parametrise

a continuous function universal for X via the evaluation mapping e. However the idea of a

11



continuous function universal is more general as it allows each function to appear more than

once in the parametrisation.

We are also interested in the following three types of set universal.

Definition 13 Given a space X we say that a space Y parametrises a zero–set (respectively,

open Fσ, open regular Fσ) universal for X if there exists U , a zero–set (respectively, open

Fσ, open regular Fσ) in X × Y such that for all A ⊂ X with A a zero–set (open Fσ, open

regular Fσ) there exists y ∈ Y such that Uy = {x ∈ X : (x, y) ∈ U} = A.

Of course we can similarly define universals for any type of subset. Note that the complement

of a zero–set universal is a cozero–set universal. For more on open set universals and Borel

set universals see [10, 12, 13].

The type of questions that we are interested in are similar to those in Cp and Ck–Theory.

It Y parametrises a universal for X and Y has some property P then what properties will

X have? On the other hand if X has some property P then what sort of spaces can we find

to parametrise a universal for X? Since we can always give the collection of objects to be

parametrised the discrete topology it is clear that the local properties of the universal can

tell us nothing about the properties of X.

2.2.1 Construction of universals

Universals present us with a difficulty that function spaces such as Ck(X) and Cp(X) do

not. For example in the case of Cp(X) we know exactly what the space is. If we are dealing

with a continuous function universal then we really must construct the continuous function

universal. We develop and utilise a number of techniques for creating universals. In this

section we describe these techniques.

The first result shows how we can create a continuous function universal from a zero set

universal. As this result is due to Gartside we do not include the proof.

Theorem 14 Suppose Y parametrises a zero–set universal for a space X. Then some sub-

space of Y ω parametrises a continuous function universal for X.

The following lemma is useful for constructing universals as it allows us to partition the
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class of subsets to be parametrised and parametrise each piece separately. We will use T

to denote a type of subset of a space. For example T could be open Fσ. Let TX denote all

subsets of a space X of type T .

Lemma 15 Fix a Tychonoff space X and T , a type of subset of X. For each n ∈ ω let An

be a subset of TX such that all the following holds. Assume that for all V ∈ TX there exist

Vn ∈ An for each n ∈ ω such that V =
⋃
{Vn : n ∈ ω}. Furthermore assume that we have

spaces {Yn : n ∈ ω} and {Un : n ∈ ω} where Un ⊂ X×Yn and Un ∈ TX×Yn such that for each

V ∈ An there exists y ∈ Yn with (Un)y = V . Then Y =
∏

n∈ω Yn parametrises a T universal

for X when T is any of the types: (i) cozero–set, (ii) open regular Fσ, (iii) open Fσ.

Proof. We begin by defining U ⊂ X × Y by U =
⋃
{Un ×

∏
j 6=n Yj : n ∈ ω}. Note that for

any y = (yn)n∈ω ∈ Y we have Uy =
⋃
{(Un)y : n ∈ ω}. Now since each of the three types of

set in question are closed under countable unions we see that {Uy : y ∈ Y } = TX . It remains

to be shown that in fact U is a set of type T in X × Y .

(i) T = cozero–set : For each n ∈ ω we have fn : X × Yn → R such that fn(x, y) = 0 if

and only if (x, y) 6∈ Un. Define F : X × Y → R by F (x, y) =
∑

n∈ω 2−nfn(x, yn) for x ∈ X

and y ∈ Y (here yn is the nth component of y ∈
∏
Yn). Note that F is continuous and

F−1({0}) = (X × Y ) \ U .

(ii) & (iii) T = open Fσ or open regular Fσ: We know that for each n ∈ ω we have

Un =
⋃

m∈ω F
m
n where Fm

n ⊂ Fm+1
n for all m ∈ ω, each Fm

n is closed and in the case of

open regular Fσ has non–empty interior. Now define Fn =
⋃
{F n

i ×
∏

j 6=i Yj : i ≤ n}. Then

U =
⋃

n∈ω Fn and each Fn is closed with non–empty interior if each Fm
n does.

There is a canonical way of creating a continuous function universal for a space in the

case where the space X has a K–coarser topology.

Definition 16 Let τ, σ be two topologies on a set X with τ ⊂ σ. We say that τ is a K–

coarser topology if (X, σ) has a neighbourhood basis consisting of τ–compact neighbourhoods.

The existence of a K–coarser topology τ on a space (X, σ) will allow us to construct a

continuous function universal for (X, σ) by refining the topology on Ck(X) without adding

“too many” open sets.
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Fix a space (X, σ). Let U = {(r, q) : r, q ∈ Q, r < q} and UQ = U ∪ {{q} : q ∈ Q}. Fix

C = 〈C0, . . . , Cn〉 where each Ci ⊂ X and U = 〈U0, . . . , Un〉 where each Ui ⊂ R.

If B ⊂ P(R) and τ, σ are topologies on X we define the space Ckτ ((X, σ),B) to have as

its underlying set C(X, σ) and a subbasis

S = {W (C,U) : C ⊂ P(X)<ω,U ⊂ B<ω, |C| = |U|,∀C ∈ C(C is τ–compact)}.

For any set A the set A<ω is the collection of all finite partial functions from ω into X whose

domain consists of some initial segment of ω. Note that Ckσ((X, σ),U) is simply the space

Ck(X, σ).

Let τ be a K–coarser topology on (X, σ). The space Ckτ ((X, σ),UQ) parametrises a

continuous function universal for (X, σ) via the evaluation map. In addition this space is T2

and 0–dimensional, and so the space is normal. Although it may be easier to work with the

space Ckτ ((X, σ),U) it is difficult to see how one would show that this space is Tychonoff.

We summarise with the following theorem.

Theorem 17 Let τ be a K–coarser topology on (X, σ).

(i) The space Ckτ ((X, σ),UQ) parametrises a continuous function universal for (X, σ) via

the evaluation map.

(ii) Ckτ ((X, σ),UQ) is T2 and 0–dimensional, and hence is normal.

Proof. (i) We must check the continuity of the evaluation map. Fix open U ⊂ R, x ∈ X

and f ∈ C(X, σ) such that f(x) ∈ U . There exists K, a τ–compact neighbourhood of x such

that f [K] ⊂ U . For all (x′, f ′) ∈ K × [K,U ] we know that e(x′, f ′) = f ′(x′) ⊂ U verifying

the continuity of e.

(ii) First we check that Ckτ ((X, σ),UQ) is T2. Fix f, g ∈ C(X, σ) such that f 6= g. So we

can find x ∈ X such that f(x) 6= g(x). The sets [{x}, (f(x) − |f(x)−g(x)|
4

, f(x) + |f(x)−g(x)|
4

)]

and [{x}, (g(x) − |f(x)−g(x)|
4

, g(x) + |f(x)−g(x)|
4

)] are disjoint open sets separating f and g.

To show that Ckτ ((X, σ),UQ) is 0–dimensional it will suffice to check that each of the

subbasic open sets are in fact closed. Let S be a subbasic open set. Assume first of all that

S = [K, (r, q)] where K is τ–compact and r, q ∈ Q. If f 6∈ S then there exists x ∈ K such

that f(x) 6∈ (r, q). If f(x) = r then [{x}, {r}] witnesses that f is not in the closure of S.
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The case where f(x) = q can be dealt with in the same way. If f(x) 6∈ [r, q] then the open

set [{x}, (f(x)− min{|f(x)−r|,|f(x)−q|}
2

, f(x) + min{|f(x)−r|,|f(x)−q|}
2

)] witnesses that f is not in the

closure of S.

Now assume that S = [K, {q}] where K is τ–compact and q ∈ Q. If f 6∈ S then there

is some x ∈ K with f(x) 6= q. The open set [{x}, (f(x) − |f(x)−q|
2

, f(x) − |f(x)−q|
2

)] witnesses

that f is not in the closure of S.

We will now show that Ckτ ((X, τ),UQ) is a dense subspace of Ckσ((X, σ),UQ). Towards

this end we have the following theorem that is closely related to Theorem 6.

Theorem 18 Let X be a Tychonoff space. Let C = 〈C0, . . . , Cn〉 consist of subsets of X and

let U = 〈U0, . . . , Un〉 where each Ui ∈ U. Assume D = 〈D0, . . . , Dm〉 consists of subsets of X

and that V = 〈{q0}, . . . , {qm}〉 where each qj ∈ Q.

If either (i) each Ci and Di is compact or (ii) each Ci and Di are zero–sets and if there

exists f ∈ W ′(C,U) ∩W ′(D,V) then there exists g ∈ W (C,U) ∩W (D,V).

Proof. As for Theorem 6 we only give the proof for case (i). Let C,U ,D and V be as in the

statement of the lemma, case (i).

Assume that there exists some f ∈ W ′(C,U) ∩W ′(D,V). Theorem 6 tells us that there

is some h ∈ W (C,U).

We will now recursively define for each k ≤ m a continuous function gk such that gk ∈

W (C,U)∩W (〈D0, . . . , Dk〉, 〈{q0}, . . . , {qk}〉). Let g−1 = h. Assume that there is k < m such

that for each i ≤ k we have defined the required gi. Find a continuous function pk+1 that

satisfies: for all x ∈ Dk+1 we have pk+1(x) = 1, for all i ≤ k and x ∈ Di we have pk+1(x) = 0

and for all j ≤ n such that Dk+1∩Cj = ∅ and x ∈ Cj we have pk+1(x) = 0. Now we define the

function gk+1 by setting for each x ∈ X that gk+1(x) = gk(x)−pk+1(x)gk(x)+pk+1(x)qk+1. It

is easily verified that gk+1 ∈ W (C,U)∩W (〈D0, . . . , Dk+1〉, 〈{q0}, . . . , {qk+1}〉). Now defining

g = gm we have constructed the required function.

The next result follows almost immediately from Theorem 18.
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Corollary 19 Fix a space (X, σ) and let τ be a K–coarser topology. Then Ckτ ((X, τ),UQ)

is a dense subspace of Ckτ ((X, σ),UQ).

Proof. Let W (C,U) be a non–emptyset basic open subset of Ckτ ((X, σ),UQ). Theorem 18

tells us that since there is a function in W (C,U) then there is a τ continuous function in

W (C,U).

2.3 RELATIONSHIPS BETWEEN THE SPACES

Most of the function spaces and universals that we have defined are closely related. For

example it is clear that the identity function from Ck(X) to Cp(X) is continuous.

Fix a space X. Let Y parametrise a continuous function universal for X, Z parametrise

a zero set universal for X and let τ be an admissible topology for C(X). In this section

we discuss some relationships between these universals and C(X) with any of the topologies

discussed in the previous section.

Theorem 20 Let Y parametrise a continuous function universal for X via the function F .

Then the mapping q : Y → Ck(X) defined as q(y) = F y for each y ∈ Y is continuous.

Proof. Fix compact K ⊂ X and U a basic open subset of R. We need to show that

q−1([K,U ]) is open in Y . Fix y ∈ q−1([K,U ]). Note that F [K × {y}] ⊂ U . For each x ∈ K

we can find open Ax ⊂ X and open Bx ⊂ Y such that (x, y) ∈ Ax×Bx and F [Ax×Bx] ⊂ U .

The compact set K can be covered by finitely many of the Ax’s, say {Axi
: i ≤ n}. Let

V =
⋂
{Bxi

: i ≤ n}. Then V is open, y ∈ V and q[V ] ⊂ [K,U ] completing the proof.

For the zero–set universal of course we don’t get a continuous map onto Ck(X), but we

get the following. A set A ⊂ C(X) separates points from zero–sets if given any zero–set

Z ⊂ X and a point x 6∈ Z there is some f ∈ A such that f(x) 6∈ f [Z].

Theorem 21 Let Z parametrise a zero set universal for X. Then there exists a continuous

function from Z onto a subspace of Ck(X) that separates points from zero–sets.

Proof. Let the function F witness that Z parametrises a zero set universal for X. We define

e : Z → Ck(X) as e(z) = F z for each z ∈ Z. Continuity of e can be demonstrated in the
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same way as for continuity of q in Theorem 20. It is easily seen that the image of Z under

e must separate points from zero–sets.

If τ is an admissible topology on C(X) then as already noted the space (C(X), τ)

parametrises a continuous function universal for X via the evaluation mapping. In this

scenario the mapping q defined in the statement of Theorem 20 is of course the identity

mapping. That the identity mapping from Ck(X) onto Cp(X) is continuous is clear from the

definitions of both topologies. We summarise all these relationships in Figure 1.

Y

q

��
(C(X), τ) i // Ck(X) i // Cp(X)

Z

e

OO

Figure 1: Maps between spaces
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3.0 COMPACTNESS TYPE PROPERTIES

Compactness is one of the most useful and powerful topological properties. Given any space

X it is natural to ask what the compact subsets of X are. If X is compact these will of

course be the closed subsets, but in general this will not be the case. It is clear from the

off that function spaces and continuous function universals will never be compact as they

cannot even be pseudocompact. However much is known about the compact subsets of

Cp(X) particularly Eberlein compacta i.e. the case where X is compact.

There are many weakenings of compactness that we can look at in the context of function

spaces. A space is σ–compact if and only if it is the countable union of compact subsets.

This again seems too strong a property for function spaces to satisfy as demonstrated by the

following theorem (see [2] p. 28 for a proof).

Theorem 22 (N. V. Velicho) The space Cp(X) is σ–compact if and only if X is finite.

A weakening of σ–compactness that has been very important in the context of Cp(X) is

the Lindelof–Σ property. The class of Lindelof Σ–spaces is the smallest class containing all

compact spaces, all separable metric spaces, and which is closed under countable products,

closed subspaces and continuous images. There are many results in Cp–Theory regarding

this property. In this thesis we will focus on these properties in universals. We will show

that for set universals compactness and σ–compactness, far from being overly restrictive

properties actually yield interesting characterisations of metrisability. In fact we obtain a

complete characterisation of those spaces with set universals parametrised by compact or

σ–compact universals. We make significant progress in the study of Lindelof–Σ universals

but do not obtain a complete characterisation. It is worth noting that no characterisation

of when Cp(X) is Lindelof–Σ is known.
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3.1 COMPACTNESS AND σ–COMPACTNESS

We begin by investigating what happens when X has a zero set universal, open regular Fσ

universal or open Fσ universal parametrised by a compact or σ–compact space. First we

define the following universal type object. Let X, Y be spaces and U ⊂ X × Y . We will

refer to the topology τ with subbasis {Uy : y ∈ Y } (where Uy = {x ∈ X : (x, y) ∈ U}) as

the topology generated by (Y,U).

The following general lemma will be very useful.

Lemma 23 Let X be a T1 space. If there exists a σ–compact space Y and open regular Fσ

set U ⊂ X × Y such that the topology generated by (Y,U) coincides with the topology on X,

then X is metrisable.

Proof. Without loss of generality we can assume that Y =
⋃

n∈ω Kn, where each Kn is

compact and open and for all n ∈ ω we have Kn ⊂ Kn+1. Let U ⊂ X × Y be as in

the statement of the lemma. For each m ∈ ω let Um ⊂ X × Y be open and assume that

U =
⋃
{Um : m ∈ ω}. For each x ∈ X and n,m ∈ ω define

V (n,m, x) =
⋃

{A ⊂ X : x ∈ A,A is open, A× (Um ∩ (X ×Kn))x ⊂ U ∩ (X ×Kn)}.

Note that each V (n,m, x) is an open neighbourhood of x. By the Collins–Roscoe metrisation

theorem (see [5]) it suffices to show:

1. For all x ∈ X the collection {V (n,m, x) : n,m ∈ ω} is a local base.

2. For all n,m ∈ ω and x ∈ X there exists an open S ⊂ X with x ∈ S such that

x ∈ V (n,m, x′) for all x′ ∈ S.

3. For all x ∈ X and all open S with x ∈ S there exist n,mω and open T with x ∈ T such

that x′ ∈ T implies V (n,m, x′) ⊂ S.

1. Fix U open and x ∈ U . There exists some y = {y1, . . . , yr} ∈ Y r such that x ∈ ∩r
i=1Uyi ⊂

U . We will use Uy to denote ∩r
i=1Uyi . We know that there is some n ∈ ω such that yi ∈ Kn

for all i = 1, . . . , r. There is also some m ∈ ω such that (x, yi) ∈ (Um ∩ (X × Kn)) for all

i = 1, . . . , r.. Note that since (Um∩(X×Kn))x is compact we can find open A with x ∈ A such
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that A×(Um∩(X×Kn))x ⊂ U∩(X×Kn). But if x′ ∈ V (n,m, x) then (x′, yi) ∈ U∩(X×Kn)

for all i = 1, . . . , r and so x′ ∈ Uy ⊂ U . This shows that x ∈ V (n,m, x) ⊂ U .

2. Fix n,m ∈ ω and x ∈ X. If (Um∩(X×Kn))x = ∅ then ({x}×Kn)∩(Um∩(X×Kn)) = ∅.

Since {x}×Kn is compact we get an open S with x ∈ S such that (S×Kn)∩(Um∩(X×Kn)) =

∅. So for all x′ ∈ S we have V (n,m, x′) = X. Now assume that (Um ∩ (X ×Kn))x 6= ∅. We

can find open S with x ∈ S and open W1,W2 ⊂ Kn such that

• W1 ∪W2 = Kn,

• Kn \ (U ×Kn)x ⊂ W1,

• (Um ∩ (X ×Kn))x ⊂ W2,

• (S ×W1) ∩ (Um ∩ (X ×Kn)) = ∅,

• S ×W2 ⊂ U ∩ (X ×Kn).

If x′ ∈ S we know from the fourth condition that ((Um∩(X×Kn))x′ ⊂ W2 and so S×((Um∩

(X ×Kn))x′ ⊂ U ∩ (X ×Kn) implying that x ∈ S ⊂ V (n,m, x′). 3. Fix x ∈ X and open T

with x ∈ T . As in the proof of part 1 we can fin y ∈ Y r such that x ∈ Uy ⊂ T . Then there

exist n,m ∈ ω such that (x, yi) ∈ Um ∩ (X ×Kn) for all i = 1, . . . , r. As before find open

S with x ∈ S and open W1,W2 satisfying the same five properties as in part 2. In addition

assume that S ⊂ (Um ∩ (X ×Kn))y. Now take x′ ∈ S. Since x′ ∈ S ⊂ (Um ∩ (X ×Kn))y we

have yi ∈ (Um ∩ (X ×Kn))x′ for all i = 1, . . . , r and so V (n,m, x′) ⊂ Uy ⊂ T .

If the parametrising space is almost σ–compact (i.e. has a dense σ–compact subspace)

then we have the following.

Theorem 24 Let X be a Tychonoff space. If X has a zero set universal or a open regular

Fσ universal parametrised by Y , an almost σ–compact space, then X is submetrisable.

Proof. Let U witness the universal. Let D ⊂ Y be a dense σ–compact subspace. Now D

generates a topology on X by letting each Uy be open for each y ∈ D. It is routine to check

that this must be a T1 topology and so by Lemma 23 we are done.

Lemma 23 also simplifies the proof of the following.

Theorem 25 Let X be a Tychonoff space. Then the following are equivalent:

1. X is metrisable.

2. X has a zero set universal parametrised by a compact Hausdorff space.
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3. X has a open regular Fσ universal parametrised by a compact Hausdorff space.

4. X has a zero set universal parametrised by a σ–compact Hausdorff space.

5. X has a open regular Fσ universal parametrised by a σ–compact Hausdorff space.

Proof. The fact that any of (2),(3),(4) or (5) imply (1) follows from Lemma 23. It is also

clear that (2) implies (4) and that (3) implies (5). It remains to show that (1) implies (2)

and (4). Let X be a metric space. Since all open sets are cozero–sets and also open regular

Fσ sets it will suffice to find a continuous real–valued function F : X × 2B → R such that

for all open U there is a y ∈ 2B with U = {x ∈ X : F (x, y) 6= 0}, where B is a basis for X

of minimal cardinality. Let B =
⋃
{Bn ∈ ω} be a σ–discrete basis for X. For each n ∈ ω we

define the function fn : X × 2Bn → R by letting

fn(x, y) = d(x,X \
⋃

{U ∈ Bn : y(U) = 1}.

We now define F (x, y) =
∑

n<ω 2−nfn(x, y �Bn). Then F (x, y) = 0 if and only if fn(x, y �Bn

) = 0 for all n ∈ ω. This holds precisely when x 6∈
⋃
{U : y(U) = 1}. So this does in fact

give us all open subsets of X. It remains to show that F is continuous. It will suffice to

check that each fn is continuous. Fix n ∈ ω, x ∈ X and y ∈ 2Bn . If fn(x, y) 6= 0 then x ∈ B

for some B ∈ Bn with y(B) = 1. Then for all y′ ∈ 2Bn such that y′(B) = y(B) = 1 and all

x′ ∈ B we have fn(x′, y′) = fn(x, y). Now assume that fn(x, y) = 0. There exists open U

with x ∈ U such that U intersects at most one B ∈ Bn. If U intersects none then for all

x′ ∈ U and all y′ ∈ 2Bn we have fn(x′, y′) = 0. If U intersects some B ∈ Bn and y(B) = 0

then fn(x′, y′) = 0 for all x′ ∈ U and for all y′ such that y′(B) = 0. If y(B) = 1 then

fn(x′, y′) ∈ (−ε, ε) for all x′ ∈ B(x, ε) and for all y′ such that y′(B) = 1.

In complete contrast to Theorem 25 it is true that every space has an open universal

parametrised by a compact space. In fact for any space X the space 2w(X) will suffice (see

[14]).

A space X is functionally perfect if and only if there exists compact K ⊂ Cp(X) such

that for every pair x, y ∈ X with x 6= y there exists f ∈ K such that f(x) 6= f(y). It is

known that every metric space is functionally perfect. But as a corollary to Theorem 25 and

Theorem 21 we get the following much stronger result.
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Corollary 26 If X is a metric space then there is, Y a compact subset of Ck(X) such that

for every x ∈ X and zero–set Z ⊂ X with x 6∈ Z there exists y ∈ Y with y[Z] = 0 and

y(x) 6= 0.

We finish this section by examining the case for continuous function universals. Clearly

X can never have a continuous function universal parametrised by a compact space. However

the situation for σ–compactness is not much better.

Theorem 27 Assume that Y parametrises a continuous function universal for a Tychonoff

space X. Then Y is σ–compact if and only if X is finite.

Proof. We know that Cp(X) is the continuous image of Y and so Cp(X) is σ–compact if Y

is. But then by Theorem 22 X must be finite. The converse is obvious as if X is finite Rn

parametrises a continuous function universal for X.

3.2 LINDELOF AND LINDELOF–Σ SPACES

We will examine what propertiesX must have if it has universals parametrised by a Lindelof–

Σ space or a Lindelof space. But first we have the following result.

Theorem 28 X is separable metric if and only if X has a continuous function universal

parametrised by a separable metric space.

Proof. If X is separable metric then it has a zero–set universal parametrised by 2ω (see the

proof of Theorem 25). Now by Lemma 14 some subspace of (2ω)ω parametrises a continuous

function universal for X. If Y parametrises a continuous function universal for X then it is

straightforward to check that w(X) ≤ nw(Y ). In fact if {Bα : α ∈ κ} is a network for Y

then defining

Cα = {U ⊂ X : U is open, F (x, y) 6= 0∀x ∈ U∀y ∈ Bα}

we have that {Cα : α ∈ γ} is a basis for X.

Theorem 29 If a Tychonoff space X has a zero set universal, open regular Fσ universal or

an open Fσ universal parametrised by a Lindelof space Y then X is first countable.
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Proof. Let U ⊂ X × Y be the relevant universal. We know that U =
⋃
{Fn : n ∈ ω}

where each Fn is closed. Fix x ∈ X and n ∈ ω. The set (Fn)x is a closed subset of Y and

so {x} × (Fn)x is Lindelof. Cover {x} × (Fn)x with countably many U(x, n,m)× V (x, n,m)

such that U(x, n,m) × V (x, n,m) ⊂ U . So we have that (Fn)x ⊂
⋃
{V (x, n,m) : m ∈ ω}

and x ∈ U(x, n,m) for all m ∈ ω. We claim that {U(x, n,m) : n,m ∈ ω} is a local basis at

x. Fix open U with x ∈ U . There is some y ∈ Y such that x ∈ Uy ⊂ U . There are n,m ∈ ω

such that (x, y) ∈ U(x, n,m) × V (x, n,m) and hence x ∈ U(x, n,m) ⊂ Uy ⊂ U .

However we know that having a continuous function universal parametrised by a Lindelof

space will not necessarily give metrisability. For example Ck(ω1) is Lindelof (see [17]) and

since ω1 is locally compact we know that the evaluation mapping e : ω1×Ck(ω1) → R defined

by e(α, f) = f(α) is continuous. So Ck(ω1) parametrises a continuous function universal for

ω1. We now look at a subclass of the class of Lindelof spaces, that of Lindelof–Σ spaces. We

have the following characterisation of Lindelof–Σ spaces.

Definition 30 A space Y is a Lindelof–Σ space if and only if there exists a cover of Y by

compact sets {Kα : α ∈ κ} and a countable collection of sets {Sn : n ∈ ω} such that for all

α ∈ κ and open U ⊃ Kα there is n ∈ ω such that Kα ⊂ Sn ⊂ U .

Since a space with a zero–set universal (or open regular Fσ universal) parametrised either

by a compact space or by a separable metric space is metric (separable metric in the second

case) it would be plausible to suppose that weakening ‘compact’ and ‘separable metric’

to ‘Lindelof Σ’ would also give metric. This is not the case. We will however get some

generalised metric properties.

The following property was defined by Bennett in [4].

Definition 31 A quasi–development for a space X is a collection {Gn : n ∈ ω} where each

Gn is a collection of open subsets of X such that for all x ∈ X and any open neighbourhood

U of x there is n = n(x, U) ∈ ω such that x ∈ St(x,Gn) ⊂ U . Any space with a quasi–

development is called quasi–developable.

In [6] it is shown that the next class of spaces, the strongly quasi–developable spaces, is the

same as the class of spaces with a σ–disjoint basis.

Definition 32 A strong quasi–development for a space X is a collection {Gn : n ∈ ω} where
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each Gn is a collection of open subsets of X such that for all open U and x ∈ U there

exists open V = V (x, U) with x ∈ V ⊂ U and n = n(x, V ) ∈ ω such that x ∈
⋃
Gn and

x ∈ St(V,Gn) ⊂ U . Any space with a strong quasi–development is called strongly quasi–

developable.

The class of quasi–developable spaces is strictly larger than the class of strongly quasi–

developable spaces. As is noted in [6] the space ψ(ω) is a developable (and hence quasi–

developable) space that has no σ–disjoint basis. To define the space ψ(ω) one takes a maximal

almost disjoint family of infinite subsets of ω, say A. Then ψ(ω) = ω ∪ A. Each point in ω

is isolated and a typical basic open neighbourhood of A ∈ A is {A} ∪ (A \ F ) where F is

finite.

We now see that a space having a zero–set universal or a open regular Fσ universal

parametrised by a Lindelof Σ–space must have a strong quasi–development, but need not be

metrisable (or even developable). Further there is a strongly quasi–developable space with

no zero–set universal or open regular Fσ universal parametrised by a Lindelof Σ–space.

Lemma 33 Let X be a Tychonoff space.

(i) If X has a zero–set universal or a open regular Fσ universal parametrised by Y , a

Lindelof–Σ space, then X has a strong quasi–development.

(ii) If X has an open Fσ universal parametrised by a Lindelof–Σ space, then X has a

quasi–development.

Proof. Assume that we have collections of sets {Kα : α ∈ κ} and {Sn : n ∈ ω} as in the

definition of Lindelof–Σ, where each is a collection of subsets of Y . Note that if Y is any of

the three relevant types of universal then there is an open U ⊂ X × Y and a collection of

closed subsets {Fm : m ∈ ω} such that

U =
⋃

{Fm : m ∈ ω}

and {Uy : y ∈ Y } is a basis for X. Now for each n,m ∈ ω and x ∈ X find open

A(x, n,m), B(x, n,m) ⊂ Y and open V (x, n,m) ⊂ X with x ∈ V (x, n,m) satisfying: (a)

A(x, n,m) ∪ B(x, n,m) ⊃ Sn , (b)(V (x, n,m) × A(x, n,m)) ∩ Fm = ∅, and (c) V (x, n,m) ×

B(x, n,m) ⊂ U . Of course we may not be able to find such sets and in this case we define
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V (x, n,m) = ∅. Let Gn,m = {V (x, n,m) : x ∈ X}. We claim that G = {Gn,m : n,m ∈ ω} is a

strong quasi–development for X if U is a zero–set universal or a open regular Fσ universal.

If U is an open Fσ universal then G is a quasi–development.

First we check that it is a basis. Fix x ∈ X and open U with x ∈ U . Without loss

of generality we can assume that U = Uy for some y ∈ Y . There is some m ∈ ω with

(x, y) ∈ Fm and there is some α ∈ κ such that y ∈ Kα. We can find open V1 ⊂ X with

x ∈ V1 and open A ⊂ Y such that

{x} × ((Y \ Ux) ∩Kα) ⊂ V1 × A

and (V1 × A) ∩ Fm = ∅. Now find open V2 ⊂ X with x ∈ V2 and open B ⊂ Y such that

{x} × ((Y \ A) ∩Kα) ⊂ V2 ×B

and V2 × B ⊂ U . Find Sn such that Kα ⊂ Sn ⊂ A ∪ B. This shows that V (x, n,m) is

indeed an open neighbourhood of x (as V (x, n,m) = V1 ∩ V2 is one possibility). Also if

x′ ∈ V (x, n,m) then since y ∈ Sn we have y ∈ A(x, n,m) or y ∈ B(x, n,m). We know that

y ∈ B(x, n,m) since (x, y) ∈ Fm. Then (x′, y) ∈ U and so x′ ∈ Uy = U .

Now we fix open U ⊂ X and x ∈ U and will show that there exist n,m ∈ ω such

that x ∈ st(x,Gn,m) ⊂ U . As before, assume U = Uy for some y and find n,m ∈ ω such

that (x, y) ∈ Fm , y ∈ Sn and x ∈ V (x, n,m) ⊂ U . If x ∈ V (x′, n,m) then we must have

y ∈ B(x′, n,m) since (x, y) ∈ Fm. But then condition (c) implies that V (x′, n,m) ⊂ Uy = U .

This completes the proof of part (ii).

In the cases where U is a zero–set universal or a open regular Fσ universal we can assume

that there is a collection of open sets {Um : m ∈ ω} such that Fm = Um for all m ∈ ω and

also

U =
⋃

{Um : m ∈ ω}.

Again fix open U , x ∈ U and y ∈ Y such that U = Uy. Find n,m ∈ ω such that (x, y) ∈ Um

, y ∈ Sn and x ∈ V (x, n,m) ⊂ U . Furthermore find open V with x ∈ V ⊂ V (x, n,m) such

that there is an open W ⊂ Y with y ∈ W and V ×W ⊂ Um. Let x2 ∈ X be such that

V ∩ V (x2, n,m) 6= ∅. Let x1 ∈ V (x2, n,m) ∩ V . If we can show that y ∈ B(x2, n,m) then

since V (x2, n,m) ×B(x2, n,m) ⊂ U we must have V (x2, n,m) ⊂ U . If y ∈ A(x2, n,m) then
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(x1, y) 6∈ Um. But we know that (x1, y) ∈ Um so y 6∈ A(x2, n,m). We know that y ∈ Sn. But

y 6∈ A(x2, n,m) means that y ∈ B(x2, n,m). This shows that x ∈ st(V,Gn,m) ⊂ U .

We have fallen somewhat short of our original aim of proving that X must be metric.

The following example shows that this in fact will not be the case.

Example 34 There is a non–developable Tychonoff space X and a Lindelof–Σ space Y , such

that Y parametrises a zero–set universal, a regular Fσ universal, and an open Fσ universal

for X.

Proof. Our aim here is to create a non–metrisable space by refining the topology on the

real–line. However we don’t want to add too many zero–sets as we don’t want to make the

parametrisation too difficult. Let B ⊂ R be a Bernstein set. Let A = R \ B. We define the

topology on X = A∪B by isolating all points in B. Note that X has a σ–disjoint base and

is not developable. We can express an arbitrary open subset of X as U ∪V where U ∩V = ∅,

V ⊂ B and U is open with respect to the Euclidean topology. If |V | ≤ ω then U ∪ V is a

co–zero subset of X (and hence an open Fσ, regular Fσ). We will show that if |V | > ω then

U∪V is not an open Fσ subset. Assume that |V | > ω. We know that U∪V =
⋃
{Cn : n ∈ ω}

where each Cn is closed. Then for some n ∈ ω we know that |V ∩ Cn| > ω. This set must

have a limit point in A, say x. But then x ∈ Cn ⊂ U ∪ V . We must have x ∈ U and so we

get U ∩ V 6= ∅ contradicting our assumption.

We know that we can parametrise all the Euclidean open sets by a compact space Y1.

We will parametrise all the one point subsets of B by a Lindelof–Σ space. So by Lemma

15 we will have that Y1 × Y ω
2 parametrises a zero–set universal for X, (and by our previous

arguments, regular Fσ and open Fσ universals). We will use Bd to denote the set B with the

discrete topology and Bu to denote B with the Euclidean topology. For any space Z let αZ

denote the Alexandroff one–point compactification of X. We define Y2 ⊂ αBd ×Bu by

Y2 = {(b, b) : b ∈ B} ∪ {(∞, b) : b ∈ B}.

Note that Y2 is closed and hence a Lindelof–Σ space. We define U ⊂ X × Y2 to be

U = {(b, b, b) : b ∈ B}.
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First note that U does in fact parametrise all the one point subsets of B. If we can show

that U is closed and open then it must be a co–zero subset of X × Y2. To show that U

is open fix (b, b, b) ∈ U . We know that {b} is open in X and {b} is open in αBd. Then

({b} × {b} ×Bu) ∩X × Y2 = {(b, b, b)} is open.

To show that U is closed we fix (x, y, b) 6∈ U and look at two cases. (i) (y 6= ∞). If

y 6= b then find Euclidean open V with b ∈ V and y 6∈ V . Then (X × {y} × V ) ∩ U = ∅.

If y = b then x 6= b. Find disjoint Euclidean open V1, V2 with x ∈ V1, b ∈ V2. This gives

(V1 ×{b}×V2)∩U = ∅. (ii) (y = ∞). If x 6= b then again find disjoint Euclidean open V1, V2

with x ∈ V1, b ∈ V2. This gives (V1 × αBd × V2) ∩ U = ∅. If x = b then choose some open

neighbourhood V of ∞ such that b 6∈ V . So ({b} × V ×Bu) ∩ U = ∅.

We must now eliminate the possibility that we could reverse the implications in Lemma

33. In other words find a strongly developable space that cannot have a zero set universal

parametrised by a Lindelof–Σ space.

Example 35 There is a Tychonoff space X that is strongly quasi–developable that cannot

have a zero–set universal, a open regular Fσ universal or an open Fσ universal parametrised

by a Lindelof–Σ space.

Proof. We begin by defining a preliminary space Z. Let Z =
∏
{in : n ∈ ω} where each

cardinal in has the discrete topology. Note that |Z| = (iω)ω > iω and that w(Z) = iω.

Also there are (iω)ω closed subsets of size |Z|. In fact any closed subset of cardinality greater

than iω has cardinality (iω)ω (see [19]). We can construct a Bernstein set in Z, i.e. B ⊂ Z

such that |B| = (iω)ω satisfying the condition that both B and Z \B intersect every closed

subset of cardinality (iω)ω. To do this we enumerate all closed subsets of cardinality (iω)ω

as C = {Cα : α < (iω)ω}. For each α < (iω)ω we choose bα, cα ⊂ Cα such that bα 6= cλ

for all λ ≤ α. Let A = Z \ B. We define the topology on X = A ∪ B by isolating all the

points in B. It remains to show that X can have no open Fσ universal parametrised by Y ,

a Lindelof–Σ space. It will suffice to assume that Y is a closed subspace of K ×M where K

is compact and M is second–countable.

If X does have such a parametrising space then in particular it must parametrise all

the one–point sets from B (i.e. there is some open Fσ set U ⊂ X × Y such that for all
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b ∈ B there is a yb ∈ Y with Uyb = {b}). Note that the collection {yb : b ∈ B} is a

discrete subspace of Y . Let C = {(b, yb) : b ∈ B}. If we can show for all m ∈ M that

|πY (C)∩ (K×{m})∩Y | < 2iω then we are done as |M | ≤ 2ω. Now assume that there exists

anm ∈M such that |πY (C)∩(K×{m})∩Y | = 2iω . LetD = πY (C)∩(K×{m})∩Y . We know

that {(b, yb) : yb ∈ D} ⊂ U . Since U is the countable union of closed subsets {Fn : n ∈ ω}

we know for some n ∈ ω that |{(b, yb) : yb ∈ D}∩Fn| = 2iω . Let E = {(b, yb) : yb ∈ D}∩Fn.

Note that E is a closed subspace of X × Y and that πY (E) ⊂ K × {m}. Hence E is

compact. Now the collection πX(E) must have a limit point outside B, say x. We will show

that for some y ∈ πY (E) we must have (x, y) ∈ E. (Such a y can clearly not be one of

the yb’s). If for every y ∈ πY (E) there exist open Vy,Wy such that (x, y) ∈ Vy ×Wy and

(Vy ×Wy) ∩ E = ∅ then find some countable subcover of πY (E) say {Wyi
: i = 1, . . . , j}.

Since (Vyi
×Wyi

) ∩ E = ∅ then defining V =
⋂
{Vyi

: i = 1, . . . , j} we get V ∩ πX(E) = ∅

which is a contradiction. To finish we note that (x, y) ∈ U . So there is some open S × T

with (x, y) ∈ S × T ⊂ U . But then we have (b, yb) ∈ S × T and so (x, yb) ∈ U contradicting

the fact that Uyb = {b}.

Problem 36 Characterise the spaces with a zero–set universal parametrised by a Lindelof–Σ

space.

We have been unable to answer the following question.

Problem 37 If a Tychonoff space X has a continuous function universal parametrised by a

Lindelof–Σ space then is X metrisable?

The following observations may be of use in answering this question. Note that if Y

parametrises a continuous function universal for X then so does any space which can be

continuously mapped onto Y . In addition every Lindelof–Σ space is the continuous image of

some space which is a closed subspace of K×M for some compact K and second–countable

M (see [16]) and so we can restrict our attention to parametrisation by such spaces. Also, if

there is a non–metrisable space with a continuous function universal parametrised by such

a space then the following result does place some restrictions on the parametrisation.

Lemma 38 Fix a Tychonoff space X, compact K, separable metrisable M and closed Y ⊂

K×M . Assume that Y parametrises a continuous function universal for X via F : X×Y →
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R. If there is some continuous f : X → R that only appears finitely many times in the

parametrisation then s(X) = ω. Hence (by Lemma 33) X is second–countable.

Proof. Since Y is a closed subspace of K ×M there is a cover of Y by pairwise disjoint

compact sets {Kα : α ∈ κ} and a countable collection of open sets U = {Un : n ∈ ω} such

that for all α ∈ κ and open U ⊃ Kα there exists n ∈ ω such that Kα ⊂ Un ⊂ U . Also assume

that U is closed under finite unions. Assume that f : X → R appears only finitely many

times in the parametrisation and that {zi : i = 1, . . . , j} list all elements of Y representing

f (i.e. F zi = f for i = 1, . . . , j). Each zi is in Kαi
for some α < κ. Now assume that

s(X) > ω and let {xβ : β < ω1} be an uncountable discrete subspace. For any r ∈ R and

γ < ω1 there is a continuous fγ,r such that fγ,r(xγ) = r and fγ,r(xβ) = 0 when γ 6= β. Now

since each Kαi
is compact we can choose rβ ∈ R such that F (xβ, y) 6= (r + f(xβ)) for any

y ∈
⋃
{Kαi

: i = 1, . . . , j} = K. For each of the functions f + fβ,rβ
choose some yβ ∈ Y

that represents the function. For each β < ω1 we can find Unβ
∈ U such that K ⊂ Unβ

and yβ 6∈ Unβ
. Since U is countable there is some Un such that K ⊂ Un and yβ 6∈ Un for

uncountably many β. But this gives a contradiction as this uncountable set must have a

limit point but the only possible limit points are {zi : i ≤ j}.

Corollary 39 Let X be a Tychonoff space and τ an admissible topology on C(X). If

(C(X), τ) is homeomorphic to a closed subspace of K × M where K is compact and M

is separable metrisable then X is a separable metrisable space.

Problem 40 If a space X has a zero–set universal parametrised by a product of a compact

and a second countable space, then is X metrisable? If X has an open regular Fσ universal

parametrised by a product of a compact and a second countable space, then is X metrisable?
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4.0 CHAIN CONDITIONS

The study of chain conditions began with Souslin’s attempt to characterise the real line.

Souslin had shown that any separable, connected, linearly ordered space with no endpoints

is homeomorphic to R. It is easily shown that if we take an uncountable collection of open

subsets of a separable space then two of them must have non–empty intersection. This

property is called the countable chain condition, as an equivalent definition is that every

collection of pairwise disjoint open subsets must be countable. Souslin wondered if one could

weaken the property of separability in the characterisation to that of the countable chain

condition. Any linearly ordered non–separable space with the countable chain condition is

known as a Souslin line. Souslin’s hypothesis states that there are no Souslin lines.

It has been shown that Souslin’s hypothesis is consistent and independent of ZFC. In

one direction it was shown by Kurepa that if X is a Souslin line then X ×X fails to have

the countable chain condition. However under MA(ω1) the product of any number of ccc

spaces is ccc, ruling out the existence of a Souslin line. Under ♦ one can construct a Souslin

line. This line of enquiry demonstrated that the question of productivity of the countable

chain condition is also undecidable in ZFC. The study of products has been a central theme

of the study of chain conditions.

The countable chain condition can be seen to be the weakest of a whole collection of chain

conditions. Other chain conditions such as Knaster’s property K and Shanin’s property have

been extensively studied. A space X has property K if and only if given any uncountable

collection of open subsets of X there is some uncountable subcollection such that any two

open subsets in this subcollection have non–empty intersection. This is obviously a strength-

ening of the countable chain condition and this property is preserved in products. Under

MA(ω1) the countable chain condition implies property K and this is why the countable
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chain condition is preserved in products under this axiom. A space X has Shanin’s con-

dition if and only if given any uncountable collection of open subsets of X there is some

uncountable subcollection such that any finite subset of this sucollection has non–empty

intersection. This strengthens property K and is also preserved in products. The property

calibre ω1 is stronger than Shanin’s condition and says that given any uncountable collection

of open subsets of X there is some uncountable subcollection with non–empty intersection.

The article by Todorcevic [27] is an excellent introduction to these properties.

We can consider these chain conditions to be a specific instance of the following definition.

Definition 41 Let κ, λ, µ be cardinals with κ ≥ λ ≥ µ.

(i) X has calibre (κ, λ, µ) if and only if for every collection of open subsets {Uα : α ∈ κ}

there is some A ⊂ κ with |A| = λ such that for every B ⊂ A with |B| = µ we have⋂
{Uα : α ∈ B} 6= ∅.

(ii) X has calibre (κ, λ,< µ) if and only if for every collection of open subsets {Uα : α ∈

κ} there is some A ⊂ κ with |A| = λ such that for every B ⊂ A with |B| < µ we have⋂
{Uα : α ∈ B} 6= ∅.

The countable chain condition is calibre (ω1, 2, 2), Shanin’s condition is calibre (ω1, ω1, < ω),

property K is calibre (ω1, ω1, 2) and calibre ω1 is shorthand for calibre (ω1, ω1, ω1). In this

section we examine when the spaces Ck(X) or Cp(X) satisfy these chain conditions. We

also deal with the countable chain condition in zero–set universals. At the end we give some

examples.

4.1 CALIBRES IN CK(X)

In [23] Nakhmanson provides necessary and sufficient on a space X for Ck(X) to have a given

cardinal κ as a calibre (under the assumption that the cofinality of κ is uncountable). He also

deals with precalibres of Ck(X). In this section we generalise these results to deal with the

case where Ck(X) has calibre (κ, λ, µ) or calibre (κ, λ,< µ). Towards this end we introduce

the following definition. Remember from Chapter 2 that a type of basic open subset W (K,U)

of Ck(X) is a function t : P(n + 1) → 2 for some n ∈ ω describing which Ki, Kj ∈ K have
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non–empty intersection. Types will be crucial to our study of chain conditions in Ck(X).

Definition 42 Let κ, λ, µ be cardinals and t a type of basic open subset of Ck(X).

(i) X has property K(κ, λ, µ, t) if and only if for every collection {Fα : α ∈ κ} where

each Fα is a collection of compact subsets of X of type t, there is some A ⊂ κ with |A| = λ

such that for every B ⊂ A with |B| = µ there exists a collection of zero sets 〈Ci : i ≤ n〉 of

type t satisfying F i
α ⊂ Ci for all α ∈ B (where the ith compact set in each Fα is F i

α).

(ii) X has property K(κ, λ,< µ, t) if and only if for every collection {Fα : α ∈ κ} where

each Fα is a collection of compact subsets of X of type t, there is some A ⊂ κ with |A| = λ

such that for every B ⊂ A with |B| = µ there exists a collection of zero sets 〈Ci : i ≤ n〉 of

type t satisfying F i
α ⊂ Ci for all α ∈ B.

(iii) If X has property K(κ, λ, µ, t) for all linear types t then we write that X has

K(κ, λ, µ).

(iv) If X has property K(κ, λ,< µ, t) for all linear types t then we write that X has

K(κ, λ, µ).

Theorem 43 Let X be Tychonoff and κ, λ, µ cardinals with κ ≥ λ ≥ µ. Assume that κ has

uncountable cofinality.

(i) Ck(X) has calibre (κ, λ, µ) if and only if X has property K(κ, λ, µ).

(i) Ck(X) has calibre (κ, λ,< µ) if and only if X has property K(κ, λ,< µ).

Proof. We will only present the proof of (i) as (ii) can be proved with minor modifications of

the same argument. Assume that Ck(X) has calibre (κ, λ, µ) and fix a collection {Fα : α ∈ κ}

where each Fα is a finite sequence of compact subsets of X of linear type t. Find for each

i ≤ n a pair of reals (li, ri) satisfying: for all i < n we have li < ri, li + 1
4
< li+1 < ri if

F i
α ∩ F i+1

α 6= ∅ and li+1 − ri >
1
4

if F i
α ∩ F i+1

α = ∅. For each Fα find continuous fα satisfying

that fα(x) ∈ [li, ri] for all i ≤ n and x ∈ F i
α. Note that the definition of (li, ri) is independent

of α.

We get a collection of open sets U = {B(fα, Fα,
1
8
) : α ∈ κ}. There exists A ⊂ κ

with |A| = λ such that for all B ⊂ A with |B| = µ we have
⋂
{Uα : α ∈ B} 6= ∅ (where

Uα = B(fα, Fα,
1
8
)). Fixing B ⊂ A with |B| = µ let f ∈

⋂
{Uα : α ∈ B} 6= ∅. Fix α ∈ B. Let

i < n. Define Ci = f−1[li − 1
8
, ri + 1

8
] and note that the type of the collection 〈C0, . . . , Cn〉 is
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in fact t. Also F i
α ⊂ Ci for all α ∈ B and so we are done.

Now assume that X has property K(κ, λ, µ). Fix a collection of open subsets of Ck(X),

say {Uα : α ∈ κ}. We can assume that there exist n > 0,ε > 0 and rationals r1, . . . , rn such

that each Uα is of the form Uα = W (Fα, Vα) where Fα is a collection of compact subsets of

X and Gα is an n–tuple of open intervals with Gi
α = (ri − ε, ri + ε). In addition we can

assume that tFα = tFβ
for each α, β ∈ κ and let t denote this common type. (Since κ has

uncountable cofinality we can do this). Apply K(κ, λ, µ, t) to the collection {Fα : α ∈ κ}

we get A ⊂ κ with |A| = λ such that for all B ⊂ A with |B| = µ we have zero sets

Ci for i ≤ n such that F i
α ⊂ Ci for all α ∈ B and the collection of zero–sets has type

t. Fixing B ⊂ A with |B| = µ and finding the zero sets 〈Ci : i ≤ n〉 we note that there

is f ′ ∈ W ′(〈Ci : i ≤ n〉, {(ri − ε, ri + ε) : i ≤ n}). So there exists, by Theorem 6, an

f ∈ W (〈Ci : i ≤ n〉, {(ri − ε, ri + ε) : i ≤ n}) and if we note that

W (〈Ci : i ≤ n〉, {(ri − ε, ri + ε) : i ≤ n}) ⊂
⋂
α∈B

Uα

then we are done.

Note that for uncountable κ the property K(κ, κ, κ, d2) is the same as the property k–κ–

separable as defined in [23]. It is also shown in [23] that K(κ, κ, κ, d2) implies K(κ, κ, κ).

We can see that any property K(κ, λ, µ) is preserved in subspaces.

Theorem 44 Fix a space X and cardinals κ, λ, µ. Assume that κ has uncountable cofinality.

Let Y ⊂ X.

(i) If X has calibre (κ, λ, µ) then Y has calibre (κ, λ, µ).

(ii) If X has calibre (κ, λ,< µ) then Y has calibre (κ, λ,< µ).

The situation regarding products is not so simple. We will deal with this later in Section

4.1.2.

4.1.1 The countable chain condition and metrisability of X

The case where Ck(X) has the countable chain condition (equivalently has calibre (ω1, 2, 2))

perhaps raises the most interesting questions. It is a “folklore” result that if X is compact

and Ck(X) is ccc then X must be metric. To see that this is true we note that if X is
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compact then Ck(X) is metric. Every metric space with the countable chain condition must

in fact have a countable network and so X must have a countable network implying that X

is metrisable.

We can now ask the question:

Just how much of the property K(ω1, 2, 2) is needed to prove this result? A more precise

formulation of this question is the following.

Question 45 For which types t can we find a compact non–metrisable space X such that X

has the property K(ω1, 2, 2, t)?

The following lemma provides a partial answer to this question.

Lemma 46 Let X be a compact space. Let t be the type of a collection 〈K0, K1, K2, K3〉

where Ki ∩ Kj 6= ∅ if and only if |i − j| ≤ 1. If X has property K(ω1, 2, 2, t) then X is

metrisable.

Proof. It suffices to find a countable T1–separating collection of closed subsets of X (see

[16]). Assume that X is compact but that there exists no countable T1–separating collection

of closed subsets of X. We will show that X cannot have property K(ω1, 2, 2, t) by recursively

defining C = {Kα : α ∈ ω1}, where each Kα = 〈K0
α, K

1
α, K

2
α, K

3
α〉 has type t that satisfies (∗):

for all α1, α2 ∈ ω1 either ⋃
i=1,2

K1
αi
∩

⋃
i=1,2

K3
αi

6= ∅

or ⋃
i=1,2

K0
αi
∩

⋃
i=1,2

K2
αi

6= ∅.

Assume that we have defined the collection Cλ = {〈K0
α, K

1
α, K

2
α, K

3
α〉 : α ∈ λ} for some

λ < ω1 where Cλ satisfies (∗). In addition assume that
⋃
{Ki

α : i = 0, 1, 2, 3} = X. We will

show how to define 〈K0
λ, K

1
λ, K

2
λ, K

3
λ〉 so that Cλ ∪ 〈K0

λ, K
1
λ, K

2
λ, K

3
λ〉 satisfies (∗).

By assumption we know that S =
⋃

i=0,1,2,3{Ki
α : α ∈ λ} is not a T1 separating collection.

So there exists x1, x2 ∈ X such that for all C ∈ S we have x1 ∈ C implies x2 ∈ C. Let

K0
λ = {x1} and let K3

λ = {x2}. Find U , an open neighbourhood of x1 that is not closed such

that x2 6∈ U . Let K1
λ = U and let K2

λ = X \ U . Note that 〈K0
λ, K

1
λ, K

2
λ, K

3
λ〉 has type t. Fix

α ∈ λ. Now x1 ∈ Ki
α for some i ∈ {0, 1, 2, 3}. By our choice of x1, x2 we know that x2 is in
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the same Ki
α. A straightforward check through the four possible cases shows that either

(K1
α ∪K1

λ) ∩ (K3
α ∪K3

λ) 6= ∅

or

(K0
α ∪K0

λ) ∩ (K2
α ∪K2

λ) 6= ∅.

This demonstrates that Cλ ∪ 〈K0
λ, K

1
λ, K

2
λ, K

3
λ〉 satisfies (∗).

Now let C be a collection of disjoint pairs of compact subsets of X that is maximal

with respect to (∗) (ie C satisfies (∗), but for any collection D, if C ( D then D does not

have property (∗)). Since X has K(ω1, 2, 2, t) we must have that C is countable. But S as

described above must be a T1–separating collection, and so we are done.

The “folklore” result already mentioned is clearly an immediate consequence of Lemma

46 and Theorem 43. However we can weaken the assumption that X is compact to X

being ω–bounded. A space is ω–bounded if and only if the closure of every countable set is

compact. First we prove the following.

Lemma 47 Let d2 be the type of a pair of disjoint sets. If a space X is ω–bounded and X

has the property K(ω1, 2, 2, d2) then X is separable and hence compact.

Proof. Assume that X is ω–bounded. We will show that if X is not separable then X does

not have the property K(ω1, 2, 2, d2) by recursively defining for each α ∈ ω1 a disjoint pair of

compact subsets of X, say Kα, Lα such that {〈Kα, Lα〉 : α ∈ ω1} witnesses that the property

K(ω1, 2, 2, d2) fails.

First we will recursively define two sequences of points from X say {xα : α ∈ ω1} and

{yα : α ∈ ω1} satisfying: yλ 6∈ {xα : α ∈ λ} ∪ {yα : α ∈ λ} for every λ ∈ ω1. To begin choose

two points x0, y0 ∈ X such that x0 6= y0. Assume that for some κ < ω1 and all λ < κ

we have chosen points xλ, yλ such that yλ 6∈ {xα : α ∈ λ} ∪ {yα : α ∈ λ}. If κ is a successor

ordinal then let xκ = yκ−1 and choose some yκ 6∈ {xα : α ∈ λ} ∪ {yα : α ∈ λ}. If κ is a limit

then choose xκ 6∈ {xα : α ∈ λ} ∪ {yα : α ∈ λ} and yκ 6∈ {xα : α ∈ λ} ∪ {yα : α ∈ λ} such that

yκ 6= xκ. Since by assumption X is not separable we can do this.
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Define K0 = {x0} and L0 = {y0}. For each λ ∈ ω1 we define Kα = {xα : α ≤ λ} and

Lλ = {yλ}. This Kα is compact as X is ω–bounded. If we take any α, β < ω1 then we cannot

have (Kα ∪Kβ)∩ (Lα ∪Lβ) = ∅ as yα ∈ Kβ if α < β and yβ ∈ Kα if α > β. This shows that

the collection {Kα, Lα : α ∈ ω} witnesses the failure of the property K(ω1, 2, 2, d2).

The following is an immediate corollary to Lemma 46 and Lemma 47

Corollary 48 If a space X is ω–bounded and Ck(X) is ccc then X is metric.

There are many properties that are known to be weaker than ω–boundedness, for example

countable compactness. For which weaker properties will this metrisation theorem hold?

Question 49 For which compactness type properties P can we show that every space X with

property P such that Ck(X) is ccc must be metrisable? Is it true for countable compactness?

Lindelof–Σ spaces?

4.1.2 Productivity of the countable chain condition

As we already noted the question of whether or not the product of ccc spaces is ccc cannot

be decided under ZFC. Under MA(ω1) the product of any number of ccc spaces is ccc. So

this will of course be true under MA(ω1) when we look at a subclass of spaces, those that

are Ck(X) for some X. However a very important question remains. Can we show in ZFC

that for every space X that Ck(X)2 must be ccc if Ck(X) is? If not then in which models of

ZFC can we construct a counterexample?

As noted in Chapter 2 the space Ck(X)2 is homeomorphic to the space Ck(X ⊕X). So

we examine when the space X ⊕X has properties K(κ, λ, µ). In addition we are interested

in what happens when we take products in the base space. The following lemma raises some

interesting questions and demonstrates that the two questions are closely related.

Lemma 50 Fix an infinite space X and cardinals κ, λ, µ. Assume that κ has uncountable

cofinality. Then the following are equivalent:

(i) X satisfies K(κ, λ, µ, t) for every type t,

(ii) for all n ∈ ω the space
⊕

i≤nX satisfies K(κ, λ, µ, t) for every type t,

(iii) for all n ∈ ω the space
∏

i≤nX satisfies K(κ, λ, µ, t) for every type t.
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Proof. (iii) implies (ii): Fix n ∈ ω and assume that
∏

i≤nX satisfies K(κ, λ, µ, t) for every

type t. The space
⊕

i≤nX can be embedded as a subspace of
∏

i≤nX. Applying Theorem

44 we are done.

(ii) implies (i): As the space X can be embedded in
⊕

i≤nX for all n ≥ 1 the result

follows immediately from Theorem 44.

(i) implies (iii): It will suffice to prove this for the case n = 2. Assume that X, κ, λ and µ

are as in the statement of the lemma and assume that X satisfies K(κ, λ, µ, t) for every type

t. Fix {Kα : α ∈ κ} where each Kα = 〈K0
α, . . . , K

m
α 〉 consists of compact subsets of X ×X.

In addition assume that each of the Kα’s has the same type, which we will denote by t.

For each α ∈ κ and i ≤ m find 〈C0
α,i, . . . , C

r(α,i)
α,i 〉 and 〈D0

α,i, . . . , D
r(α,i)
α,i 〉 where each Cj

α,i

and Dj
α,i are compact subsets of X satisfying: (i) Kj

α ⊂
⋃
{Cj

α,i ×Dj
α,i : j ≤ r(α, i)} and (ii)

Ki1
α ∩Ki2

α = ∅ if and only if
⋃
{Cj

α,i1
×Dj

α,i1
: j ≤ r(α, i1)} ∩

⋃
{Cj

α,i2
×Dj

α,i2
: j ≤ r(α, i2)}.

By passing to a κ sized subset we can assume that r(α, i) = ri for each α ∈ κ and i ≤ m.

We can now form Tα = 〈C0
α,0, . . . , C

r0
α,0, D

0
α,0, . . . , D

r0
α,0, . . . , C

0
α,m, . . . , C

rm
α,m, D

0
α,m, . . . , D

rm
α,m〉.

Essentially Tα is just some relisting of all the Cj
α,i’s and Dj

α,i’s. Assume that each Tα is of the

same type t′. Apply K(κ, λ, µ, t′) to the collection {Tα : α ∈ κ} to get the required A ⊂ κ

with |A| = λ.

Fix B ⊂ A with |B| = µ. There exists a sequence of zero–subsets of X of type t′, say

〈Y 0
0 , . . . , Y

r0
0 , Z0

0 , . . . , Z
r0
0 , . . . , Y

0
m, . . . , Y

rm
m , Z0

m, . . . , Z
rm
m 〉 such that for each i ≤ m, j ≤ ri and

α ∈ B we have Cj
α,i ⊂ Y j

i and Dj
α,i ⊂ Zi

j. Finally for each i ≤ m define Li =
⋃
{Y j

i × Zj
i :

j ≤ ri}. Now the collection 〈L0, . . . , Lm〉 has type t. Now Ki
α ⊂ Li for each α ∈ B and

i ≤ m. We can check that if Li ∩ Lj 6= ∅ then Ki
α ∩Kj

α 6= ∅. This will demonstrate that the

collection 〈L0, . . . , Lm〉 has type t, finishing the proof.

Fix such an i, j < m and α ∈ B. If Li ∩ Lj 6= ∅ then we can find s ≤ mi and s′ ≤ mj

such that Y s
i × Zs

i ∩ Y s′
j × Zs′

j 6= ∅. This implies that Y s
i ∩ Y s′

j 6= ∅ and Zs
i ∩ Zs′

j 6= ∅.

But this would of course imply that Cs
α,i ∩ Cs′

α,j 6= ∅ and Ds
α,i ∩ Ds′

α,j 6= ∅ giving us that

(Cs
α,i ×Ds

α,i) ∩ (Cs′
α,j ×Ds′

α,j) 6= ∅. Finally this would mean that Ki ∩Kj 6= ∅.

At first glance this would seem to show that all calibres are preserved in finite products

in the Ck setting. However if Ck(X) has calibre (κ, λ, µ) then this only guarantees that X

has K(κ, λ, µ, t) for every linear type t. We can strengthen this if we look at the class of
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zero–dimensional spaces.

Theorem 51 Let X is a 0–dimensional space and fix cardinals κ, λ, µ. Assume that κ has

uncountable cofinality. Then X satisfies K(κ, λ, µ, t) for every discrete type t iff X satisfies

K(κ, λ, µ, t) for every type t.

Proof. Let X, κ, λ and µ be as in the statement of the theorem. Assume that X satisfies

K(κ, λ, µ, t) for every discrete type t. Fix an arbitrary type t and let {Kα : α ∈ κ} consist

of (n+ 1)–tuples of compact subsets of X, where each Kα has type t. We will replace each

Kα with a D(Kα) of discrete type.

Let L = 〈L0, . . . , Ln〉 consist of compact subsets of X. We will demonstrate how to

construct D(L). To do this we will construct for each j ≤ n a set Lj = 〈L0
j , . . . , L

n〉 and

clopen Mj such that Mj ∩
⋃
Lj+1 = ∅. Let L0 = L and M0 = ∅. Assume that we have

constructed Ls and Ms for all s ≤ j. Let A(Lj) = {Y ⊂ (n + 1) :
⋂

i∈Y L
i
j 6= ∅,∀i′ 6∈

Y (Li′
j ∩

⋂
i∈Y L

i
j = ∅)}. For each Y ∈ A(Lj) find clopen D(L)Y such that

⋂
i∈Y L

i
j ⊂ D(L)Y

but D(L)Y ∩D(L)Y ′ = ∅ when Y 6= Y ′. In addition assume that Mj ∩D(L)Y = ∅ for each

Y . Define Lj+1 by Lj+1 = 〈L0
j+1, . . . , L

n
j+1〉 where Li

j+1 = Li
j ∩ (X \ (

⋃
Y ∈A(Lj)

D(L)Y )). We

also define Mj+1 = Mj ∪ (
⋃

Y ∈A(Lj)
D(L)Y )).

It is clear that Li
n = ∅ for each i ≤ n. Let IL consist of all those Y ⊂ n + 1 for which

D(L)Y was defined. Let D(L)Y = D(L)Y ∩
⋃

i≤n L
i. By choosing some ordering of IL we can

now construct D(L). It follows from the construction that in fact D(L) is of discrete type.

For each α ∈ κ construct D(Kα). We will write Dα instead of D(Kα). By passing to

a κ sized subcollection if necessary we can assume that IKα = IKβ
for each α, β and that

the order chosen on these sets that is used to construct Dα and Dβ are in fact the same.

We use I to denote this common set. Let m = |I|. Apply K(κ, λ, µ, dm) to the collection

{Dα : α ∈ κ} to find A ⊂ κ with |A| = λ and the other properties asserted by K(κ, λ, µ, dm).

Now fix B ⊂ A with |B| = µ. There is C = 〈CY : Y ∈ I〉 consisting of pairwise disjoint zero

sets with LY
α ⊂ CY for all Y ∈ I and α ∈ B. Let Ci =

⋃
{CY : i ∈ Y }. Then the collection

C ′ = 〈C0, . . . , Cn〉 has type t and Ki
α ⊂ Ci for all α ∈ B.

As every discrete type is clearly linear we get the following.

Corollary 52 Let X is a 0–dimensional space and fix cardinals κ, λ, µ. Assume that κ has
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uncountable cofinality. The following are equivalent:

(i) Ck(X) has calibre (κ, λ, µ),

(ii) Ck(X)n has calibre (κ, λ, µ) for all n ∈ ω,

(iii) Ck(X
n) has calibre (κ, λ, µ) for all n ∈ ω.

Now we return to the general case. We know that calibre ω1 is preserved in products

in the class of all Tychonoff spaces and hence K(ω1, ω1, ω1) is preserved when we take the

disjoint sum. We will show the stronger result that K(ω1, ω1, ω1) is preserved in products.

First we prove the following lemma. Note that this lemma is essentially the same as the

result in [23], however Nakhmanson does not deal with types.

Lemma 53 Let X be a space and fix cardinals κ and µ. Assume that κ has uncountable

cofinality.

(i) If X has K(κ, κ, µ, d2) then X has K(κ, κ, µ, t) for every type t.

(ii) If X has K(κ, κ,< µ, d2) then X has K(κ, κ,< µ, t) for every type t.

Proof. Let X, κ and µ be as in the statement of the lemma. We will just prove (i) as (ii) can

be proved with minor modifications of the same argument. Assume that X has K(κ, κ, µ, d2)

and fix a type t.

Fix, as usual, {Cα : α ∈ κ} where each Cα has type t and consists of compact subsets of

X. Assume |Cα| = n + 1. Let I consist of all unordered pairs {i, j} where i 6= j, i, j ≤ n

and t({i, j}) = 0. In other words I lists all the pairs of disjoint sets in any collection of type

t. Order this to get 〈pr : r ≤ m〉 where each pr = {ir, jr} ∈ I.

We will recursively define the required A ⊂ κ of size κ. Apply K(κ, κ, µ, d2) to the

collection {〈Ci0
α , D

j0
α 〉 : α ∈ κ} to get A0 ⊂ κ such that |A0| = κ and A satisfies the other

properties guaranteed by K(κ, κ, µ, d2). Assume that we have defined Al for all l ≤ r for

some r < m. We can apply K(κ, κ, µ, d2) to the collection {〈Cir
α , D

jr
α 〉 : α ∈ Ar} to get

Ar+1 ⊂ ω1. Finally note that A = Am will suffice to witness that X satisfies K(κ, κ, µ, t) in

this particular instance.

Combining Lemma 53 and Lemma 50 we get the following corollary.

Corollary 54 Let X be a space and fix cardinals κ and µ. Assume that κ has uncountable

cofinality. The following are equivalent:
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(i) Ck(X) has calibre (κ, κ, µ),

(ii) Ck(X)n has calibre (κ, κ, µ) for all n ∈ ω,

(iii) Ck(X
n) has calibre (κ, κ, µ) for all n ∈ ω.

We will now use Martin’s axiom to deal with the specific case of K(ω1, 2, 2). To begin

with we will need to introduce some notation and results connecting MA with partitions.

These definitions and more information on partitions can be found in [26].

Definition 55 Let S be an uncountable set and [S]<ω = K0∪K1 is a partition ie K0∩K1 = ∅.

We say that this is a ccc partition if and only if

(i) {x} ∈ K0 for each x ∈ S,

(ii) A subset of an element of K0 is also in K0,

(iii) Every uncountable subset of K0 contains two elements whose union is in K0.

For the application we have in mind we will fix some X and define S = {〈C,D〉 : C,D ⊂

X;C,D compact, C ∩ D = ∅}. Assuming that X satisfies K(ω1, 2, 2, d2) we can form the

following ccc partition. Let K0 consist of all those finite {〈Ci, Di〉 : i ≤ n} ⊂ S such that⋃
i≤nCi ∩

⋃
i≤nDi = ∅. Then defining K1 = [S]<ω \K0 we get a ccc partition.

We have the following version of Martin’s axiom.

Lemma 56 MA(ω1) is equivalent to the following statement. Let S be a set of size ω1 and

let [S]<ω = K0 ∪K1 be a partition. Then S can be covered by countably many Sn such that

[Sn]<ω ⊂ K0 for every n ≤ ω.

We will use this version of MA(ω1) to show that K(ω1, 2, 2) is preserved in products.

Theorem 57 (MA(ω1)) Let X be a space. If X has K(ω1, 2, 2) then X2 has K(ω1, 2, 2).

Proof. Let X be a spaces and assume that X satisfies K(ω1, 2, 2). We will begin by showing

that X must have K(ω1, ω1, 2, d2). Fix {(Cα, Dα) : α ∈ ω1} where each Cα and Dα are

compact subsets of X and Cα ∩Dα = ∅. Let S = {Cα : α ∈ ω1} ∪ {Dα : α ∈ ω1}. Let K0

consist of all those finite {〈Ci, Di〉 : i ≤ n} ⊂ S such that
⋃

i≤nCi ∩
⋃

i≤nDi = ∅. To see

that this is a ccc partition it suffices to note that for all spaces the property K(ω1, 2, 2, d2)

implies K(ω1, n, n, d2) for all n < ω.
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Apply Lemma 56 to this partition to get countably many Sn covering S such that [S]n ⊂

K0 for each n < ω. There must be some Sn such that Sn is uncountable. Let A ⊂ ω1

satisfy |A| = ω1 and S = {(Cα, Dα) : α ∈ A}. Fix F ⊂ A with |F | = n. We know

that {(Cα, Dα) : α ∈ F} ∈ [S]n and so is in K0, completing the proof that X must have

K(ω1, ω1, 2, d2).

Apply Lemma 53 to see that X satisfies K(ω1, ω1, 2, t) for every type t. Then Lemma 50

gives us that X2 has K(ω1, ω1, 2) and so must have K(ω1, 2, 2).

Unfortunately we have been unable to find a consistent example of a space X such that

X has K(ω1, 2, 2) but X2, (or even X ⊕X) does not.

Problem 58 Is there a consistent example of a space X such that X has K(ω1, 2, 2) but X2

does not? If not, is there a consistent example of a space X such that X has K(ω1, 2, 2) but

X ⊕X does not?

See Chapter 6 for an outline of some possible approaches to this problem.

4.2 CALIBRES IN CP (X)

In this section we generalise Nakhmanson’s results on chain conditions in Cp(X), finding a

characterisation of those X where Cp(X) has a given calibre or precalibre. This characteri-

sation is very similar in nature to its equivalent in Ck(X), without the added complication

of dealing with types.

Definition 59 Let κ, λ, µ be cardinals and n < ω.

(i) X has property P(κ, λ, µ, n) if and only if for every collection of n–tuples of points

{Fα : α ∈ κ} there is some A ⊂ κ with |A| = λ such that for every B ⊂ A with |B| = µ

there exist pairwise disjoint zero sets Ci for i ≤ n such that F i
α ∈ Ci for all α ∈ B(where the

ith coordinate in each Fα is F i
α).

(ii) X has property P(κ, λ,< µ, n) if and only if for every collection of n–tuples of points

{Fα : α ∈ κ} there is some A ⊂ κ with |A| = λ such that for every B ⊂ A with |B| < µ

there exist pairwise disjoint zero sets Ci for i ≤ n such that F i
α ∈ Ci for all α ∈ B.
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(iii) If X has property P(κ, λ, µ, n) for all n < ω then we write that X has P(κ, λ, µ).

(iv) If X has property P(κ, λ,< µ, n) for all n < ω then we write that X has P(κ, λ,< µ).

Theorem 60 Let X be Tychonoff and κ, λ, µ cardinals with κ ≥ λ ≥ µ. Assume that κ has

uncountable cofinality.

(i) Cp(X) has calibre (κ, λ, µ) if and only if X has property P(κ, λ, µ).

(i) Cp(X) has calibre (κ, λ,< µ) if and only if X has property P(κ, λ,< µ).

Proof. We will only give the proof of (i). Assume that Cp(X) has calibre (κ, λ, µ)

and fix a collection of n–tuples of points {Fα : α ∈ κ}. For each α ∈ κ we define open

Uα = {g ∈ C(X) : |g(F i
α) − i| < 1

4
∀i ≤ n}. Let U = {Uα : α ∈ κ}. There exists A ⊂ κ with

|A| = λ such that for all B ⊂ A with |B| = µ we have
⋂
{Uα : α ∈ B} 6= ∅. Fixing B ⊂ A

with |B| = µ let f ∈
⋂
{Uα : α ∈ B} 6= ∅. Define Ci = f−1[i− 1

4
, i+ 1

4
] and note that the Ci’s

are pairwise disjoint zero sets. Also for each α ∈ B we have |f(F i
α) − i| < 1

4
and so F i

α ∈ Ci

for all i ≤ n.

Assume that X has property P(κ, λ, µ, n) for all n < ω. Fix a collection of open subsets

{Uα : α ∈ κ}. We can assume that there exist n > 0, an ε > 0 and rationals r1, . . . , rn such

that each Uα is of the form Uα = B(Fα, Gα) where Fα is an n–tuple of points of X and Gα is

an n–tuple of open intervals with Gi
α = (ri − ε, ri + ε). (Since κ is regular and uncountable

we can do this).

Applying P(κ, λ, µ, n) to the collection {Fα : α ∈ κ} we get A ⊂ κ with |A| = λ such

that for all B ⊂ A with |B| = µ we have pairwise disjoint zero sets Ci for i ≤ n such that

F i
α ∈ Ci for all α ∈ B. Fixing B ⊂ A with |B| = µ and finding the zero sets {C1, . . . , Cn}

we note that there is f ∈ C(X) such that f(x) = ri for all i ≤ n and x ∈ Ci. Clearly

f ∈
⋂
{Uα : α ∈ B}.

We can demonstrate immediately why Cp(X) has calibre (κ, κ,< ω) for all κ and every

X.

Theorem 61 For every space X the space Cp(X) has calibre (κ, κ,< ω) for all κ with

uncountable cofinality.

Proof. Fix κ, λ and a space X. Choose some {(xα, yα) : α ∈ κ} where each xα 6= yα and

xα, yα ∈ X. We need A ⊂ κ with |A| = κ such that for all finite F ⊂ A we have xα 6= yβ for
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α, β ∈ F .

Fix α ∈ κ. Note that if xα = xβ or yα = yβ for κ many β’s then we are done. So without

loss of generality we can assume that for each α ∈ κ we have |{β : xβ = xα} ∪ {β : yβ =

yα}| ≤ ω. Now it is straightforward to recursively define αβ ∈ κ for each β ∈ κ such that

xαβ1
6= yαβ2

for all β1, β2 ∈ kappa. This gives us the required A ⊂ κ.

It is worth noting that we have shown more than required. However this does not show

that X must have P(ω1, ω1, ω1) as we have no way of knowing if we can find disjoint zero–sets

C,D such that xαβ
∈ C and yαβ

∈ D for all β ∈ κ.

Just as for property K(κ, λ, µ) it is easily shown that the property P(κ, λ, µ) is preserved

in subspaces.

In the papers [3] and [25] Arhangelskii and Tkacuk demonstrate that Cp(X) has calibre

ω1 if and only if X has a small diagonal. We say a space X has a small diagonal if and only

if for every collection {xα : α ∈ ω1} such that each xα ∈ (X ×X) \ {(x, x) : x ∈ X} there

exists open U ⊃ {(x, x) : x ∈ X} with xα 6∈ U for uncountably many of the xα’s. We have

been unable to prove directly that every space with a small diagonal also satisfies property

P(ω1, ω1, ω1), however this must be true. One of the most important questions relating to

this property is the following.

Question 62 Is every compact space X with a small diagonal metrisable?

It was shown by Hao–Zuan in [18] that it is consistent with ZFC that every compact space

with a small diagonal is metrisable. However the problem remains unsolved in ZFC.

4.3 CALIBRES IN UNIVERSALS

4.3.1 Sufficient conditions

We will find some sufficient conditions for a space to have a continuous function universal

parametrised by a separable space, a ccc space or a space with calibre ω1. These rely on the

idea of a K–coarser topology on a space. Recall the following definition and theorem from

chapter 2.
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Definition 63 Let τ, σ be two topologies on a set X with τ ⊂ σ. We say that τ is a K–

coarser topology if (X, σ) has a neighbourhood basis consisting of τ–compact neighbourhoods.

Corollary 64 Fix a space (X, σ) and let τ be a K–coarser topology. Then Ckτ ((X, τ),UQ)

is a dense subspace of Ckτ ((X, σ),UQ).

We also demonstrated that if τ is a K–coarser topology on (X, σ) then Ckτ ((X, σ),UQ)

parametrises a continuous function universal for (X, σ). If we want this continuous func-

tion universal to be ccc, separable or have calibre ω1 then it will suffice to show that

Ckτ ((X, τ),UQ) has these properties. From now on we will write Ck(X,UQ) and Ck(X)

as there will only one topology considered on X.

Fix an arbitrary space X. We will investigate when Ck(X,UQ) is ccc, separable or has

calibre ω1.

Lemma 65 Fix a space X. Then

(i) Ck(X,UQ) is separable if and only if Ck(X) is separable,

(ii) Ck(X,UQ) is ccc if and only Ck(X) is ccc,

(iii) Ck(X,UQ) has calibre ω1 if and only if Ck(X) has calibre ω1.

Proof. The identity map is a continuous function from Ck(X,UQ) onto Ck(X) and so one

implication is immediate in (i), (ii) and (iii).

Part (i): Assume that Ck(X) is separable and so X has a coarser second countable

topology τ . Let A = {An : n ∈ ω} be a basis for τ . Assume that A is closed under

finite unions. For each n,m ∈ ω let fn,m : X → R be a τ–continuous function satisfying

fn,m(x) = 1 when x ∈ Am and fn,m(x) = 0 when x ∈ X \ An. Of course this is only well–

defined when Am ⊂ An and if this does not hold then we let fn,m(x) = 0 for all x ∈ X. The

linear span of {fn,m : n,m ∈ ω} over Q is a countable set that is dense in Ck(X,UQ).

Part (iii): Assume that Ck(X) has calibre ω1. Fix an uncountable collection W = {Wα :

α ∈ ω1} of basic open non–empty subsets of Ck(X,UQ). So we can assume that each Wα is

of the form B(Cα,Uα) ∩B(Dα,Vα) where for all α ∈ ω1: Cα = {Cα
i : i ≤ nα} consists of zero

sets of X, Uα = {Uα
i : i ≤ nα} where each Ui ∈ U, Dα = {Dα

j : j ≤ mα} consists of pairwise

disjoint zero subsets of X and Vα = {{qα
j } : j ≤ mα} where each qα

j ∈ Q.
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By passing to an uncountable subcollection we can assume that for all α, β ∈ ω1 we have

Uα = Uβ and Vα = Vβ. We will drop the subscripts and use U and V to denote these sets.

Assume that |U| = n and |V| = m. We can write V as {{qj} : j ≤ m where each qj ∈ Q.

Choose δ > 0 such that 4δ < min{|qi − qj| : i, j ≤ m}. We define a new collection V ′ by

defining for each j ≤ m the set V ′
j = (qj −δ, qj +δ) and letting V ′ = {V ′

j : j ≤ m}. Note that

for each α ∈ ω1 we know thatB(Cα,Uα)∩B(Dα,V ′
α) is a non–empty subset of Ck(X). So there

is some f ∈ C(X) and A ⊂ ω1 such that |A| = ω1 and f ∈
⋂
{B(Cα,Uα)∩B(Dα,V ′

α) : α ∈ A}.

We define two collections of zero sets C and D by defining for each i ≤ n, Ci = f−1(Ui)

and for each j ≤ m we define Dj = f−1(V ′
i ). Note that if j, j′ ≤ m then Dj ∩Dj′ = ∅ when

j 6= j′. We can define a new function f ′ by setting f ′(x) = f(x) when x 6∈
⋃

D and f ′(x) = qj

when x ∈ Dj. Now we have that f ′ ∈ B′(C,U) ∩ B′(D,V) and so applying Theorem 18 we

know that there exists g ∈ B(C,U) ∩B(D,V). But

B(C,U) ∩B(D,V) ⊂
⋂
α∈A

Wα

and so we are done.

Part (ii) can be proved in much the same way as part (ii).

Corollary 66 Let (X, σ) be a Tychonoff space and let τ be a K–coarser topology.

(i) If the space (X, τ) is second–countable then (X, σ) has a continuous function universal

parametrised by a separable space.

(ii) If Ck(X, τ) is ccc then (X, σ) has a continuous function universal parametrised by a

ccc space.

(iii) If the space Ck(X, τ) has calibre ω1 then (X, σ) has a continuous function universal

parametrised by a space with calibre ω1.

We can also derive sufficient conditions in the ccc or calibre ω1 cases that do not depend

on the properties of an external object (such as Ck(X, τ)) by using our characterisations of

when Ck(X) is ccc or has calibre ω1.

These results are useful when dealing with spaces that are not locally compact, as in the

locally compact case Ck(X) itself will parametrise a continuous function universal for X.
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Example 67 The Sorgenfrey line has a continuous function universal parametrised by a

separable space.

Proof. The Euclidean topology on R is a second–countable K–coarser on the Sorgenfrey

line. So using corollary 66 we get the required result.

4.3.2 Necessary conditions

We will deal first with the case where a space X has a continuous function universal

parametrised by a separable space. We say a space (X, σ) is co-SM if and only if there

is a separable metric topology τ ⊂ σ such that (X, σ) has a neighbourhood basis of τ–closed

sets.

Lemma 68 If X has a continuous function universal parametrised by a separable space then

X is co-SM.

Proof. Let Y be a separable metric space that parametrises a continuous function universal

for X via the function F : X×Y → R. Let D be a countable dense subset of Y . Each d ∈ D

represents the continuous function F d. Let τ be the coarsest topology that makes each F d

continuous and note that τ is separable metric.

Fix x in open U . Pick y ∈ Y so that F (x, y) = 1 and F [(X \ U) × {y}] = {0}. By

continuity of F at (x, y) there are open V and W with x ∈ V , y ∈ W and F [V ×W ] ⊆ (2
3
, 4

3
).

Claim: If x′ 6∈ U then there is a τ–open T containing x′ disjoint from V .

From the claim it follows that V
τ ⊆ U , and by regularity of X, the τ–closed neighbour-

hoods of x form a local base — as required for co–SM.

Well suppose x′ 6∈ U , then F (x′, y) = 0. So by continuity of F at (x′, y) there are open

V ′ and W ′ with x′ ∈ V ′ and y ∈ W ′ so that F [V ′ ×W ′] ⊆ (−1
3
, 1

3
).

Pick d ∈ D ∩ (W ∩W ′). Then d ∈ W ′ so F (x′, d) ∈ (−1
3
, 1

3
). Hence by τ–continuity

of F d at x′, there is a τ–open T 3 x′ such that F [T × {d}] ⊆ (−1
3
, 1

3
). Since d ∈ W ,

F [V × {d}] ⊆ (2
3
, 4

3
). Hence V and T are disjoint — as required.

Note that this falls short of the sufficient condition given previously leading to the fol-

lowing question.
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Problem 69 Is there a Tychonoff space X such that X is co-SM but X can have no con-

tinuous function universal parametrised by a separable space?

Turning our attention to parametrising spaces which are ccc we introduce the following

two properties.

Definition 70 A space X has the property P1 if and only if for every pair of disjoint compact

subsets (K,L) there exists a pair of open sets U(K,L), V (K,L) with K ⊂ U(K,L), L ⊂

V (K,L) and U(K,L) ∩ V (K,L) = ∅ satisfying the following :

for all collections {(Kα, Lα) : α ∈ ω1} of pairs of disjoint compact sets there exists α1, α2

such that ⋃
i=1,2

U(Kαi
, Lαi

) ∩
⋃

i=1,2

V (Kαi
, Lαi

) = ∅.

Definition 71 A space X has the property P2 if and only if for every pair of disjoint compact

subsets (K,L) there exists a pair of open sets U(K,L), V (K,L) with K ⊂ U(K,L), L ⊂

V (K,L) and U(K,L) ∩ V (K,L) = ∅ satisfying the following :

for all collections {(Kα, Lα) : α ∈ ω1} of pairs of disjoint compact sets there exists α1, α2

such that ⋃
i=1,2

Kαi
⊂

⋂
i=1,2

U(Kαi
, Lαi

)

and ⋃
i=1,2

Lαi
⊂

⋂
i=1,2

V (Kαi
, Lαi

).

Lemma 72 Let X be a Tychonoff space. If X has a zero set universal parametrised by a

ccc space then X has property P1 and every compact subspace has property P2.

Proof. Let Y be ccc and assume that Y parametrises a zero set universal for X via the

continuous function F : X × Y → R. Let Z be the disjoint sum of ω many copies of Y and

let Yn denote the nth copy of Y that is a subspace of Z. Define a function F ′ : X × Y → R

by letting F ′(x, z) = nF (x, z) when z ∈ Yn. Finally let G = |F ′|. Note that Z parametrises

a zero set universal for X via G, that Z is ccc and that for any pair of disjoint compact sets

K,L ⊂ X there exists z ∈ Z such that Gz[K] = 0 and Gz[L] ⊂ [1,∞). We say that such a

z separates K and L.
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We will first show that X has property P2 on its compact subspaces. Fix a compact

subspace C. Let K,L be disjoint compact subsets of C. We show how to construct the

required U(K,L) and V (K,L). Since K and L are compact we can find z(K,L) ∈ Z that

separates K and L. Let U(K,L) = {x ∈ C : G(x, z(K,L)) < 1
4
} and V (K,L) = {x ∈

C : G(x, z(K,L)) > 3
4
}. Find open W (K,L) such that z(K,L) ∈ W (K,L) and for all

(x, z1), (x, z2) ∈ C ×W (K,L) we have |G(x, z1) −G(x, z2)| < 1
8
.

Now take a collection {(Kα, Lα) : α ∈ ω1} of pairs of disjoint compact subsets of C.

Look at the corresponding collection {W (Kα, Lα) : α ∈ ω1}. Since Z is ccc there must be

z ∈ Z and α1, α2 ∈ ω1 such that z ∈ W (Kα1 , Lα1) ∩W (Kα2 , Lα2). We claim that⋃
i=1,2

Kαi
⊂

⋂
i=1,2

U(Kαi
, Lαi

)

and ⋃
i=1,2

Lαi
⊂

⋂
i=1,2

V (Kαi
, Lαi

)

as required. We will only show that Kα1 ⊂ U(Kα2 , Lα2) as the other cases can be dealt

with similarly. Fix x ∈ Kα1 . Note that G(x, z) < 1
8

since G(x, z(Kα1 , Lα1)) = 0 and

z ∈ W (Kα1 , Lα1). But then G(x, z(Kα2 , Lα2)) <
1
8

+ 1
8

= 1
4

and so x ∈ U(Kα2 , Lα2).

Now we will show that X has property P1. The proof is similar to the P1 case and so we

will only show how to construct U(K,L) and V (K,L). Let K,L be disjoint compact subsets

of X. Find z ∈ Z that separates K and L. Using the compactness of K and L and the

continuity of G find open U(K,L), V (K,L),W (K,L) such that K ⊂ U(K,L), L ⊂ V (K,L)

and z ∈ W (K,L) satisfying: for all (x, z′) ∈ U(K,L) ×W (K,L), G(x, z′) < 1
4

and for all

(x, z′) ∈ V (K,L) ×W (K,L), G(x, z′) > 1
8
.

The next lemma is very similar to Lemma 46.

Lemma 73 Let X be a compact Hausdorff space. If X has property P2 then X is metrisable.

Proof. It suffices to find a countable T1–separating collection of open subsets of X. Let

C = {(Kα, Lα) : α ∈ I} be a collection of disjoint pairs of compact subsets of X that satisfies

(∗): for all α1, α2 ∈ I either ⋃
i=1,2

Kαi
6⊂

⋂
i=1,2

U(Kαi
, Lαi

)
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or ⋃
i=1,2

Lαi
6⊂

⋂
i=1,2

V (Kαi
, Lαi

).

Assume that S = {U(Kα, Lα) : α ∈ I} ∪ {V (Kα, Lα) : α ∈ I} is not a T0 separating

collection. We will show that we can find (K,L) such that C ∪ {(K,L)} satisfies the same

property (∗) as C. Since S is not a T1–separating collection there exists x1, x2 ∈ X such that

for all C ∈ S we have x1 ∈ C implies x2 ∈ C. Let K = {x1} and let L = {x2}. Fix α ∈ I.

If x1 ∈ U(Kα, Lα) and x2 ∈ V (Kα, Lα) then x2 6∈ U(Kα, Lα), contradicting the choice of

x1, x2. So condition (∗) holds for C ∪ {(K,L)}.

Now let C be a collection of disjoint pairs of compact subsets of X that is maximal with

respect to (∗) (ie C satisfies (∗), but for any collection D, if C ( D then D does not have

property (∗)). Since X has P2 we must have that C is countable. But S as described above

must be a T1–separating collection, and so we are done.

Problem 74 Does the property P1 imply the property P2? If not is the property P1 equivalent

to metrisability in compact spaces?

4.4 EXAMPLES

Our first example shows that the situation with regards to chain conditions in Cp(X) and

Ck(X) can essentially be as bad as possible.

Example 75 There is an example of a space X such that Cp(X) does not have calibre

(ω1, ω, ω) and Ck(X) is not ccc.

Proof. We take X = αℵ1, the one–point compactification of the discrete space of size ℵ1.

Let ∞ denote the extra point. As X is not even first–countable it cannot be metric and

hence using Lemma 46 we know that Ck(X) is not ccc. To see that Cp(X) does not have

calibre (ω1, ω, ω), or equivalently X does not have property P(ω1, ω, ω) it suffices to note

that ∞ is in the closure of any countable subset of ℵ1. Then {〈∞, α〉 : α ∈ ω1} witnesses

the failure of P(ω1, ω, ω).
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Example 76 There is a space X such that Cp(X) does not have calibre ω1 but does have cal-

ibre (ω1, ω1, ω). In addition Ck(X) does not have calibre ω1 but does have calibre (ω1, ω1, ω).

Proof. The space in question is L(ℵ1), the one point Lindelofication of the discrete

space of size ℵ1. In other words X = {∞} ∪ ℵ1, where each point in ℵ1 is isolated and a

typical open neighbourhood of ∞ is {∞} ∪ (ℵ1 \ C) where C is countable.

Note that the compact subsets of L(ℵ1) are simply the finite subsets and so L(ℵ1) has

P(κ, λ, µ) if and only if L(ℵ1) has K(κ, λ, µ). The collection {〈∞, α〉 : α ∈ ℵ1} shows that

L(ℵ1) does not satisfy P(ω1, ω1, ω1). It takes a straightforward examination of the various

cases to show that this space does satisfy P(ω1, ω1, ω).

Example 77 If we take X = ω1 with the order topology then Ck(X) is not ccc although

every compact subspace of ω1 is metrisable.

Proof. As every compact subset of ω1 is countable it must be second–countable, and hence

metrisable. But ω1 is clearly ω–bounded and non–metrisable, and so using Lemma 47 we

can see that ω1 must fail to have property K(ω1, 2, 2).

Example 78 There is a space X that has no continuous function universal parametrised by

a separable space. However X will have a continuous function universal parametrised by a

space with calibre ω1. In fact we can ensure that d(Cp(X)) is a large as we want.

Proof. Let X be the disjoint sum of c+ many copies of the Sorgenfrey line. We know

that X has no continuous function universal parametrised by a separable space as Cp(X) is

not even separable. But since X will have a K–coarser metric topology we can construct a

continuous function universal parametrised by a space with calibre ω1 (see [23]). By choosing

κ sufficiently large and taking κ many copies of the Sorgenfrey line we can increase the

density of Cp(X) but this space will still have a continuous function universal parametrised

by a space with calibre ω1.
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5.0 SEQUENTIAL DENSITY

The space Cp(X) is rarely metric. It is easily seen that if X is uncountable then Cp(X) fails

to be even first countable. If X is countable then of course Cp(X) embeds in Rω. On the

other hand Cp(X) is separable if and only if X has a coarser second countable topology. This

is a relatively broad class of spaces. In this section we consider weakenings of the property

separable metric with the hope that Cp(X) will satisfy these properties for a broader range

of spaces than just the countable ones.

Definition 79 A space X is sequentially separable if and only if there exists a countable

D ⊂ X such that for every x ∈ X there exists a sequence 〈xn : n ∈ ω〉 converging to x such

that xn ∈ D for each n ∈ ω. We say that D is sequentially dense in X.

This is a property that separable metric spaces certainly have, however the class of

sequentially separable spaces is considerably broader. It includes all the cosmic spaces,

those spaces that are the continuous image of a separable metric space. Although the idea

of approximation of a function by functions from a fixed countable set is hardly new, as the

study of Fourier series demonstrates, in this section we completely characterise those spaces

X such that Cp(X) is sequentially separable. We also investigate the following property in

both Cp(X) and Ck(X).

Definition 80 A space X is strongly sequentially separable if and only if X is separable

and every countable dense subset of X is sequentially dense.

Another closely related area is the study of products of (strongly) sequentially separable

spaces. It a well known theorem due to Hewitt, Marczewski and Pondiczery that the product

of κ many separable spaces is separable if and only if κ ≤ c. For sequentially separable spaces
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the relevant cardinal seems to be q. A subset S of the real line is called a Q–set if each one

of its subsets is a Gδ. The cardinal q is the smallest cardinal so that for any κ < q there

is a Q–set of size κ. The cardinal p is the smallest cardinal so that there is a collection of

p many subsets of the natural numbers with the strong finite intersection property but no

infinite pseudo–intersection.

The study of sequentially separable spaces was started by Tall [24] who showed that

under MA+¬CH, the product of less than continuum many sequentially separable spaces is

sequentially separable. Tall’s result was extended to products of < p sequentially separable

spaces by Matveev [21], who also introduced the class of strongly sequentially separable

spaces. Dow, Matveev and Nyikos showed that the Cantor cube 2κ is strongly sequentially

separable if and only if κ < p.

It is known that ω1 ≤ p ≤ q ≤ 2ℵ0 , that it is consistent that p < q, and that the cofinality

of q is uncountable.. (See [28] for more on small cardinals including p.)

In the paper [11] Gartside shows the following.

Lemma 81 Suppose X =
∏

α∈κXα is sequentially separable. If each Xα is non–trivial, then

2κ is sequentially separable and hence κ < q.

One would hope to reverse Theorem 81 proving that the product of less than q sequentially

separable spaces is sequentially separable. We have not been able to do this however we do

have a result if we assume that the spaces are in fact cosmic.

One other result from [11] due to Gartside is worth mentioning at this point.

Theorem 82 Let Xα be non–trivial separable metrisable spaces for α ∈ κ. Then X =∏
α∈κXα is strongly sequentially separable if and only if κ < p.

However it seems unlikely that we could show that the product of even two arbitrary strongly

sequentially separable spaces is strongly sequentially separable. Our investigations into the

strongly sequentially separable property in Cp(X) will provide at least a consistent example

of two strongly sequentially separable spaces whose product is not strongly sequentially

separable.
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5.1 SEQUENTIALLY SEPARABLE PRODUCT SPACES

Here we demonstrate that the product of < q cosmic spaces is sequentially separable. It may

be true that this holds for products of sequentially separable spaces. When proving Theorem

83 we construct a countable sequentially dense set using the networks of the cosmic spaces.

For this reason it seems unlikely that one could adapt this proof to the general, sequentially

separable case.

Theorem 83 The product of κ many non–trivial cosmic spaces is sequentially separable if

and only if κ < q.

Proof. The necessity of the condition κ < q is immediate from Lemma 81. Let X be a set

with |X| < q. For each x ∈ X let (Yx, σx) be cosmic. Let Nx be a countable network for

(Yx, σx). Define a new finer topology τx on Yx by letting Nx be a base of closed and open

sets. If we can construct some countable sequentially dense subset of
∏

x∈X(Yx, τx) then we

will be done since the identity i :
∏

x∈X(Yx, τx) →
∏

x∈X(Yx, σx) is continuous.

(Yx, τx) is second countable, T2 and zero–dimensional and so it is homeomorphic to a

subset of ωω. Then for each x ∈ X the space (Yx, τx) will certainly have a network

Ux = {Y x
i,j : i ∈ N, j = 1, . . . , 2i}

such that for fixed i the collection {Y x
i,j : j = 1, . . . , 2i} partitions Yx (ie Y x

i,j1
∩ Y x

i,j2
=

∅ when j1 6= j2 and
⋃
{Y x

i,j : j ≤ 2i} = Y x). In case Yx has isolated points we allow

some of the Y x
i,j’s to be empty. We also require that Y x

i,j = Y x
i+1,2j−1 ∪ Y x

i+1,2j so that as i

increases we get finer partitions of Y x. For each x ∈ X choose an arbitrary point of Yx

and label this 0x. For each non-empty Y x
i,j choose a yx

i,j ∈ Y x
i,j. |X| < q and so X has a

(†)basis B = {Bn : n ∈ ω}. Assume that X ∈ B, B is closed under finite unions and finite

intersections and Bn \ Bm ∈ B when n 6= m. We define a countable set F ⊂
∏

x∈X(Yx, τx)

by insisting that f ∈ F if and only if there exists some collection of pairwise disjoint sets,

{Bns : s = 0, . . . ,m}, from B and some collection of indices {(is, js) : s = 0, . . . ,m} such

that f(x) = yx
is,js

for all x ∈ Bns , and f(x) = 0x otherwise. We claim that F is sequentially

dense in
∏

x∈X Yx.
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Fix f ∈
∏

x∈X Yx. For all i, j we define X(i, j) = {x ∈ X : f(x) ∈ Y x
i,j}. Note that

{X(i, j) : i ∈ N, j ≤ 2i} has the same partitioning properties as each {Y x
i,j : i ∈ N, j ≤ 2i}.

For all of the sets above we have some sequence {Bk(i, j) : k ∈ ω} from B that (†)converges

to X(i, j). (If X(i, j) = ∅ then let each Bk(i, j) = ∅). Now we will inductively construct

sequences {Ck(i, j) : k ∈ ω} that (†)converge to X(i, j), such that for all i ∈ N we have

Ck(i, j) ∩ Ck(i, j′) = ∅ when j 6= j′, and Ck(i + 1, 2j − 1) ∪ Ck(i + 1, 2j) ⊂ Ck(i, j) when

j ≤ 2i. Let Ck(1, 1) = Bk(1, 1) and let Ck(1, 2) = Bk(1, 2) ∩ (X \ Ck(1, 1)) for all k ∈ ω.

{Ck(1, 2) : k ∈ ω} (†)converges to X(1, 2) since {X \ Bk(1, 1) : k ∈ ω} (†)converges to

X \ X(1, 1) = X(1, 2). Also note that Ck(1, 1) ∩ Ck(1, 2) = ∅ for all k ∈ ω. For arbitrary

i ∈ N and j ≤ 2i we define

Ck(i+ 1, 2j − 1) = Bk(i+ 1, 2j − 1) ∩ Ck(i, j),

Ck(i+ 1, 2j) = Bk(i+ 1, 2j) ∩ Ck(i, j) ∩ (X \ Ck(i+ 1, 2j − 1)).

The fact that {Ck(i+1, 2j−1)} is (†)convergent to X(i+1, 2j−1), and {Ck(i+1, 2j)} is

(†)convergent toX(i+1, 2j) follows from our inductive hypothesis and the fact thatX(i, j) =

X(i+1, 2j− 1)∪X(i+1, 2j). It is also clear that Ck(i+1, 2j− 1)∪Ck(i+1, 2j) ⊂ Ck(i, j).

Having constructed all the Ck’s at the i+1 level we can see that they are pairwise disjoint as

Ck(i+ 1, 2j− 1)∩Ck(i+ 1, 2j) = ∅ and we have assumed that the Ck’s are pairwise disjoint

at the i level. Note that each Ck(i, j) is in B.

Now we construct a sequence of functions {fk : k ∈ ω} from F , converging to f . Define

fk by setting fk(x) = 0x if x 6∈ Ck(i, j) for all i ≤ k, all j ≤ 2i. Otherwise we let fk(x) = yx
i′,j′

where i′ = max{i ≤ k : x ∈ Ck(i, j) for some j ≤ 2i} and x ∈ Ck(i′, j′).

Finally we show that this sequence does in fact converge to f . Let x ∈ X. Let U be an

open subset of Yx such that f(x) ∈ U . Then f(x) ∈ Y x
i,j ⊂ U for some i, j. There is some N

such that x ∈ Ck(i, j) for all k > N . Then for all k > max{N, i}, we know that fk(x) = yr,s

for some r, s with r ≥ i. Also x ∈ Ck(r, s) ⊂ Ck(i, j) and so Y x
r,s ⊂ Y x

i,j. This shows that

fk(x) ∈ Y x
i,j.

Problem 84 Is it true that the product of less than q many sequentially separable spaces is

sequentially separable?
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5.2 SEQUENTIAL DENSITY OF CP (X)

Necessary and sufficient conditions for Cp(X) to be sequentially separable are given. These

depend on property Γ which is variation on the property γ to be introduced in the context

of Cp(X) strongly sequentially separable.

A collection C of subsets of a space (X, τ) has property Γ on (X, τ) if and only if given

any finite collection of disjoint cozero subsets {Oi}n
i=1 there exist sequences {Cj

i : j ∈ ω}n
i=1,

from C such that Cj
i′ ∩ C

j
i = ∅ when i 6= i′ and Oi ⊂ lim inf Cj

i .

Theorem 85 Cp((X, τ)) is sequentially separable if and only if there exists a coarser second

countable topology µ for X and there exists some collection of µ–closed sets C = {Ci : i ∈ ω}

such that C has property Γ on (X, τ).

Proof. Assume that Cp((X, τ)) is sequentially separable, with F a countable sequentially

dense subset. We know that X has a coarser second countable topology, µ, with basis

obtained by taking all inverse images under elements of F of rational intervals in R. Let

{Oi}n
i=1 be a disjoint collection of τ–cozero sets. Let f be a τ–continuous positive function

satisfying: i−1 < f(x) < i for all x ∈ Oi when i = 1, . . . , n. There is a sequence {fj : j ∈ ω}

from F such that fj → f . Define Cj
i = f−1

j ([i − 1 + 1
j+2

, i − 1
j+2

]). We can see that

Oi ⊂ lim inf Cj
i and that Cj

i′ ∩ Cj
i = ∅ when i 6= i′. We can now clearly construct the

required countable collection, C of µ–closed sets with property Γ.

Assume that there exists a coarser second countable topology µ for X and there exists

some collection of µ–closed sets C = {Ci : i ∈ ω} such that C has property Γ on (X, τ).

For convenience we will assume that for all f ∈ Cp((X, τ)) we have that f(X) ⊂ (0, 1).

Let F ′ be a countable subset of Cp(X) such that given any finite collection {C1, . . . , Cn}

of pairwise disjoint sets from C and rationals {r1, . . . , rn} there is some f ∈ F ′ such that

f(x) = ri when x ∈ Ci and min{r1, . . . , rn} ≤ f(x) ≤ max{r1, . . . , rn}. Also assume

that given f, g ∈ F ′ then the functions max{f, g} and min{f, g} are also in F ′, where

max{f, g}(x) = max{f(x), g(x)} for all x ∈ X and min{f, g}(x) = min{f(x), g(x)} for all

x ∈ X. Finally assume that F ′ is closed under finite rational linear combinations. Now it

will suffice to prove that F = F ′ ∩ Cp(X, (0, 1)) is sequentially dense in Cp(X, (0, 1)). Fix
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f ∈ Cp(X, (0, 1) and an integer p > 1. We claim that there exists some sequence {fp
i : i ∈ ω}

from F that converges to f except at f−1(Ap) where Ap = { i
pj : j ∈ N, i = 1, . . . , pj − 1}.

For all j ∈ N and i = 1, . . . , pj − 1 define Oj,i = f−1(( i
pj ,

i+1
pj )). By assumption, for

fixed j we have sequences {Bk
j,i : k ∈ ω} from C such that Bk

j,i′ ∩ Bk
j,i = ∅ when i 6= i′ and

Oj,i ⊂ lim inf Bk
j,i. Let Ck

1,i = Bk
1,i for relevant i. For each i ≤ pj+1 define Ck

j+1,i = Bk
j+1,i∩Ck

j,i′

when Oj+1,i ⊂ Oj,i′ (which can clearly only happen for one such i′). Define

fp
k =

1

2pk
+

∑
j≤k

∑
i<pj

gk
j,i

where gk
j,i(x) = i mod p

pj for x ∈ Ck
j,i and gk

j,i(x) ≤
p−1
pj for all x ∈ X. Note that for all k ∈ ω we

have fp
k ∈ F . Then {fp

k : k ∈ ω} converges to f except at f−1(Ap). To prove convergence: fix

x ∈ X \f−1(Ap) and ε > 0. There are i1, j1 such that f(x) ∈ ( i1
pj1
, i1+1

pj1
) ⊂ (f(x)−ε, f(x)+ε).

There is some N > 0 such that x ∈ Ck
j1,i1

for all k > N . So it suffices to show that if x ∈ Ck
j1,i1

and k > j1 then fp
k (x) ∈ ( i1

pj1
, i1+1

pj1
). To do this we split the sum

∑
j≤k

∑
i<2j gk

j,i into two

bits. First we claim that
∑

j≤j1

∑
i<2j gk

j,i = i1
pj1

. We show this by induction on j1. This is

clearly true when j1 = 1. If x ∈ Ck
j1+1,i1

and x ∈ Ck
j1,i2

then∑
j≤j1+1

∑
i<2j

gk
j,i =

i2
pj1

+
i1 mod p

pj1+1
=
pi2 + i1 mod p

pj1+1
.

But by the nested construction of the Ck
j,i’s we must have pi2 + i1 mod p = i1. Now we also

have ∑
j1<j≤k

∑
i<2j

gk
j,i ≤

∑
j1<j≤k

∑
i<2j

p− 1

pj

=
1

pj1
− 1

pk
.

Finally we get that

fp
k (x) =

∑
j≤k

∑
i<2j

gk
j,i +

1

2pk
>

i1
pj1

and ∑
j≤k

∑
i<2j

gk
j,i +

1

2pk
≤ i1

pj1
+

1

pj1
− 1

pk
+

1

2pk

=
i1 + 1

pj1
− 1

2pk
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and so fp
k (x) ∈ ( i1

pj1
, i1+1

pj1
).

Now we can construct {fk : k ∈ ω} converging to f on all of X. We have {f 2
k : k ∈ ω}

converging except on f−1(A2) and {f 3
k : k ∈ ω} converging except on f−1(A3). Let {f 2,3

k :

k ∈ ω} be defined as f 2,3
k (x) = max{f 2

k (x), f3
k (x)} for all k ∈ ω. This clearly converges on

X \ (f−1(A2) ∪ f−1(A3)). Define {f 5,7
k : k ∈ ω} in the same way. Now let {fk : k ∈ ω} be

defined as fk(x) = min{f 2,3
k (x), f5,7

k (x)}. Then {fk : k ∈ ω} converges to f . Assume that

{fk(x) : k ∈ ω} does not converge for some x ∈ (f−1(A2) ∪ f−1(A3) ∪ f−1(A5) ∪ f−1(A7)).

Without loss of generality assume x ∈ f−1(A2). So there is some ε > 0 such that for all

N > 0 there exists k > N with fk(x) 6∈ (f(x)− ε, f(x) + ε). But {f 5,7
k (x) : k ∈ ω} converges

to f(x) so there is some N1 > 0 such that for all N > N1 there is some k > N with

fk(x) = f 2,3
k (x) ≤ f(x) − ε. Using the fact that {f 3

k (x) : k ∈ ω} converges to f(x) and the

construction of the f 2,3
k ’s we will get some N2 > 0 such that for all N > N2 there will be

k > N2 with f 2
k (x) = f 2,3

k (x) ≤ f(x) − ε and f 3
k (x) ∈ (f(x) − ε, f(x) + ε). This contradicts

our definition of f 2,3
k . So {fk : k ∈ ω} converges on all of X.

5.3 STRONG SEQUENTIAL SEPARABILITY OF CP (X)

Before looking at the strong sequential separability of Cp(X) we review the case for the

Frechet–Urysohn property. Recall that a Frechet–Urysohn space is a space X such that

whenever x ∈ A, there is a sequence in A converging to x.

Definition 86 A family α of subsets of X is called an ω–cover of X if for every finite

F ⊂ X there is a U ∈ α such that F ⊂ U .

Theorem 87 (Gerlits & Nagy) The following are equivalent:

(i) Cp(X) is Frechet–Urysohn;

(ii) X has the property γ: for any open ω–cover α of X there is a sequence β ⊂ α such

that lim inf β = X.

For a proof of Theorem 87 see [15], and more information on the property γ see [15, 9].

This gives us immediately that if X has the property γ and has a coarser second–countable
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topology then Cp(X) is strongly sequentially separable, as separable, Frechet Urysohn spaces

are strongly sequentially separable. We also have the following.

Theorem 88 If |X| < p then Cp(X) is strongly sequentially separable.

Proof. Using Theorem 82 we know that RX is strongly sequentially separable. Since Cp(X)

is a dense subspace of RX we know that Cp(X) must be strongly sequentially separable.

Now we completely characterize those spaces X so that Cp(X) is strongly sequentially

separable, starting with the special case of X separable metric. The proof of the following

result is similar to the proof of Theorem 87.

Theorem 89 Let X be T3 and second countable. Then Cp(X) is strongly sequentially sepa-

rable if and only if Cp(X) is Frechet–Urysohn.

Proof. Assume Cp(X) is Frechet–Urysohn. X is second countable so Cp(X) is separable.

Cp(X) is Frechet–Urysohn and separable and so Cp(x) is strongly sequentially separable.

Now, to show that Cp(X) strongly sequentially separable implies Cp(X) is Frechet–

Urysohn we show that Cp(X) is strongly sequentially separable implies X has the property

γ described in Theorem 87. Let α be an open ω–cover of X. Let A = {f ∈ Cp(X) :

f−1(R \ {0}) ⊂ U for some U ∈ α}. Let {Bn : n ∈ ω} be a countable base for X. If

Bn ⊂ Bm then let fm
n : X → [0, 1] be a continuous function such that fm

n (Bn) = 1 and

fm
n (X \ Bm) = 0. Let B be the linear span over Q of all such functions. Note that B is

countable. We will show that A∩B is dense in Cp(X). Let B(g, x1, . . . , xn; ε) be an arbitrary

open set in Cp(X). There is some U ∈ α such that {x1, . . . , xn} ⊂ U . For each i = 1, . . . , n

there are basic open Vi,Wi with Vi ⊂ Wi ⊂ Wi ⊂ U and Wi ∩Wj = ∅ when i 6= j. We know

that for each pair Vi,Wi there is some fi ∈ B with fi(Vi) = 1 and fi(X \Wi) = 0. Let qi ∈ Q

satisfy |g(xi) − qi| < ε. Then

h =
n∑

i=1

qifi ∈ B(g, x1, . . . , xn; ε).

Also if x is not in any Wi then h(x) = 0 and so h−1(R \ {0}) ⊂
⋃
{Wi : i = 1, . . . , n}. This

shows that h−1(R \ {0}) ⊂ U and so h ∈ A∩B. Now A∩B is countable and dense in Cp(X).

Let f 1 denote the constant function at 1. Since Cp(X) is strongly sequentially separable then

there is some sequence {fn : n ∈ ω} in A∩B (and so in A) converging to f 1. For each n ∈ ω

58



we take a Un ∈ α for which f−1
n (R \ {0}) ⊂ Un. Then lim inf {Un : n ∈ ω} = X. To see this

note that for any x ∈ X we have a nx ∈ ω such that fn ∈ B(f 1, x; 1) for all n > nx. But

this means that fn(x) > 0 and so x ∈ Un for all n > nx.

Todorcevic, in [9], has shown that, consistently, there are two subsets of the reals, X and

Y say, with the γ property such that their disjoint sum X⊕Y does not have the γ property.

Since X ⊕ Y is T3 and second countable, and Cp(X ⊕ Y ) = Cp(X) × Cp(Y ), we have the

following example:

Example 90 (Cons(ZFC)) There are separable metric spaces X and Y so that the topolog-

ical groups Cp(X) and Cp(Y ) are strongly sequentially separable but their product, Cp(X) ×

Cp(Y ) is not strongly sequentially separable.

We now remove the restriction that X be second countable.

Theorem 91 The function space Cp(X) is strongly sequentially separable if and only if X

has a coarser second countable topology, and every coarser second countable topology for X

has the property γ.

Proof. Assume that Cp(X) is strongly sequentially separable. We know that X has a

coarser second countable topology. If τ is an arbitrary coarser second countable topology for

X then we know that Cp((X, τ)) embeds densely into Cp(X). Also Cp((X, τ)) is separable

and so Cp((X, τ)) is strongly sequentially separable. So Theorem 87 and Theorem 89 imply

that (X, τ) has property γ.

Assume that X has a coarser second countable topology. Then Cp(X) is separable. Let

A be a countable dense subset of Cp(X). We wish to show that for any f ∈ Cp(X) there is

some sequence {fi : i ∈ ω} ⊂ A such that f is the limit of the sequence. Let {Uj : j ∈ ω}

be a base for R and let {Vk : k ∈ ω} be the collection of all preimages of the Uj’s under the

functions in A∪{f}. This collection is a base for a T3 topology τ , on X (given Vk = g−1(Uj)

we know that there is a Uj′ with Uj′ ⊂ Uj and so g−1(Uj′) ⊂ Uj) and clearly each function

in A ∪ {f} is continuous with respect to τ . We know that Cp(X, τ) is Frechet–Urysohn and

so since f ∈ A then we know that f is the limit of some sequence {fi : i ∈ ω} ⊂ A.

We now ask the following question.

Problem 92 Is it possible to find a space X such that Cp(X) is strongly sequentially sepa-
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rable but Cp(X)2 is not strongly sequentially separable?

In other words we would need a space X such that every coarser second–countable topology

on X has property γ but there are two such topologies τ1 and τ2 such that (X, τ1) ⊕ (X, τ2)

fails to have the property γ.

It is consistent and independent for arbitrary X, that Cp(X) is strongly sequentially

separable if and only if Cp(X) is Frechet–Urysohn. In fact it is consistent with ZFC that:

Corollary 93 (Cons(ZFC)) The following are equivalent:

(i) Cp(X) is strongly sequentially separable,

(ii) X is countable,

(iii) Cp(X) is separable and Frechet–Urysohn.

Proof. A space X has the property C ′′ if for any sequence {Gn : n ∈ ω} of open covers

of X there is some Un ∈ Gn for all n ∈ ω such that
⋃
{Un : n ∈ ω} = X. If X has property

γ then it has property C ′′. It is consistent with ZFC that the only subsets of R with C ′′

are countable. If a space X has a coarser second countable topology τ with (X, τ) having γ

then ind(X, τ) = 0 and (X, τ) has C ′′, which implies (X, τ) is homeomorphic to a subset of

R with property C ′′. Hence the corollary.

Example 94 Assume that ω1 < p. There is a space X such that Cp(X) is strongly sequen-

tially separable but not Frechet–Urysohn.

Proof. We simply take X to be ω1 with the discrete topology. This has a coarser second–

countable topology and so Cp(X) is a separable, dense subspace of RX . We know from

Theorem 82 that RX must be strongly sequentially separable and so Cp(X) is strongly

sequentially separable. However Rω1 is not Frechet–Urysohn.

This example leads to the following question.

Problem 95 Is there a consistent example of a space X, such that Cp(X) is strongly se-

quentially separable, not Frechet–Urysohn and RX is not strongly sequentially separable?

The argument of Example 94 shows that if κ < p then any subset of R of size κ has

the property γ. The converse is also true (folklore) which rules out finding a solution to
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Problem 95 by forcing a model of ZFC in which all ℵ1 sized subsets of R have the γ property

but ω1 = p (so Rω1 is not strongly sequentially separable.)

Lemma 96 Every subset of R of size κ has property γ if and only if κ < p.

5.4 STRONG SEQUENTIAL SEPARABILITY OF CK(X)

The characterisation of when Ck(X) is strongly sequentially separable seems very similar

to the Cp(X) case. However, in contrast to the situation with regards to Cp(X) we can

expect Ck(X) to be strongly sequentially separable for a reasonably broad class of spaces. In

particular we know that Ck(X) is separable metric, and hence strongly sequentially separable

when X is a hemi–compact metric space.

We begin with a review of the case for the Frechet Urysohn property. See [22] for more

details and proofs of the following.

Definition 97 A family α of subsets of X is called an K–cover of X if for every compact

K ⊂ X there is a U ∈ α such that K ⊂ U .

Theorem 98 The following are equivalent: (i) Ck(X) is Frechet–Urysohn; (ii) X has the

property γK: for any open K–cover α of X there is a sequence {Ui : i ∈ ω} from α such that

for all compact K ⊂ X there exists nK ∈ ω with K ⊂ Ui for all i > nK.

As with the Cp(X) case we start by assuming that X is second–countable.

Theorem 99 Let X be T3 and second countable. Then Ck(X) is strongly sequentially sepa-

rable if and only if Ck(X) is Frechet–Urysohn.

Proof. Assume Ck(X) is Frechet–Urysohn. X is second countable so Ck(X) is separable.

Ck(X) is Frechet–Urysohn and separable and so Ck(x) is strongly sequentially separable.

Now we assume that Ck(X) is strongly sequentially separable and show that X has the

property γK . Let α be an open ωK–cover of X. Let A and B be defined as in the proof of

89. We will show that A∩B is dense in Ck(X). Fix V = W (K,U), a non–empty basic open

subset of Ck(X). So we can assume that K = 〈K0, . . . , Kn〉 where each Ki is compact and

K has linear type t. In addition we can assume that U = 〈U0, . . . , Un〉 where each Ui is an

61



interval in R with rational endpoints. Let ri denote the midpoint of the interval Ui. As
⋃

K

is compact we know that there is U ∈ α with K ⊂ U . We will recursively define for each

i ≤ n a continuous function fi ∈ A ∩ B ∩W (〈K0, . . . , Ki〉, 〈U0, . . . , Ui〉) and then fn will be

an element of A ∩B ∩ V .

For each Ki find basic open Vi,Wi such that Ki ⊂ Vi ⊂ Vi ⊂ Wi ⊂ Wi ⊂ U . In addition

assume that Wi ∩ Wj = ∅ if and only if Ki ∩ Kj = ∅. Let f0 satisfy: (i) f0(x) = r0 for

all x ∈ V0 (ii) f0(x) = 0 for all x ∈ X \ W0, (iii) 0 ≤ f0(x) ≤ ri for all x ∈ X. Then

f0 ∈ W (〈K0〉, 〈U0〉). As f−1
0 (R \ {0}) ⊂ W0 and W0 ⊂ U then f0 ∈ A. We have that f0 ∈ B

from the construction of f0.

Now assume that there is some i < n such that we have defined fj for all j ≤ i.

We show how to construct fi+1. Let gi+1 satisfy: (i) gi+1(x) = 1 for all x ∈ Vi+1 (ii)

gi+1(x) = 0 for all x ∈ X \ Wi+1, (iii) 0 ≤ gi+1(x) ≤ 1 for all x ∈ X. Now we define

fi+1(x) = fi(x)− fi(x)gi+1(x)+ ri+1gi+1(x). As both fi and gi+1 are in B then so is fi+1. As

in the proof of Lemma 6 we can see that fi+1 ∈ W (〈K0, . . . , Ki+1〉, 〈U0, . . . , Ui+1〉). Finally

x ∈ f−1
i+1(R \ {0} implies that there exist j ≤ i+ 1 such that x ∈ Wj and so fi+1 ∈ A.

Now A ∩ B is countable and dense in Ck(X). Let f 1 denote the constant function at 1.

Since Ck(X) is strongly sequentially separable then there is some sequence {fn : n ∈ ω} in

A ∩ B converging to f 1. For each n ∈ ω we take a Un ∈ α for which f−1
n (R \ {0}) ⊂ Un.

Fix compact K ⊂ X. Look at the open set W (〈K〉, 〈(0, 2)〉). There is some nK such that

fj ∈ W (〈K〉, 〈(0, 2)〉) for all j > nK . But then K ⊂ Uj for each j > nK .

As Ck(X) will be Frechet–Urysohn for every compact X it is easy to find a space X such

that Ck(X) is Frechet–Urysohn but not strongly sequentially separable. Any compact space

of uncountable weight will suffice.

We now remove the restriction that X be second countable. We give no proof for this

theorem as it can be proven just as Theorem 91 is proven.

Theorem 100 The function space Ck(X) is strongly sequentially separable if and only if X

has a coarser second countable topology ,and every coarser second countable topology for X

has the property γK.

Our example for the Cp section also works in the Ck(X) case as for any discrete space
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X we know that Cp(X) = Ck(X) = RX .

Example 101 Assume that ω1 < p. Then if we let X be the discrete space of size ℵ1 we

have that Ck(X) is strongly sequentially separable but not Frechet–Urysohn.

We now ask the following questions.

Problem 102 Is it possible to find spaces X, Y such that Ck(X)and Ck(Y ) are strongly

sequentially separable but Ck(X) × Ck(Y ) is not strongly sequentially separable?

Problem 103 Is it possible to find a space X such that Ck(X) is strongly sequentially sep-

arable but Ck(X)2 is not strongly sequentially separable?

Problem 104 Is it possible in ZFC to find a space X such that Ck(X) is strongly sequentially

separable but Ck(X) is not Frechet–Urysohn?
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6.0 CONCLUSION

In addition to all the unsolved problems from the various chapters we would like to mention

the following problem.

Problem 105 For which classes of spaces can we develop general techniques for creating

universals?

In the class of spaces with a K–coarser topology we have shown that such a technique

exists. If we wish to understand universals we will need more methods of creating universals.

6.1 OPEN PROBLEMS

6.1.1 Compactness properties

Problem 106 Characterise the spaces with a zero–set universal parametrised by a Lindelof

Σ space.

Problem 107 If a Tychonoff space X has a continuous function universal parametrised by

a Lindelof–Σ space then is X metrisable?

Problem 108 If a space X has a zero–set universal parametrised by a product of a compact

and a second countable space, then is X metrisable? If X has an open regular Fσ universal

parametrised by a product of a compact and a second countable space, then is X metrisable?
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6.1.2 Chain conditions

Question 109 For which types t can we find a compact non–metrisable space X such that

X has the property K(ω1, 2, 2, t)?

Question 110 For which compactness type properties P can we show that every space X

with property P such that Ck(X) is ccc must be metrisable? Is it true for countable compact-

ness? Lindelof–Σ spaces?

Problem 111 Does the property P1 imply the property P2? If not is the property P1 equiv-

alent to metrisability in compact spaces?

Surely the most interesting unsolved problem from this section is the following.

Problem 112 Is there a consistent example of a space X such that X has K(ω1, 2, 2) but

X2 does not? If not, is there a consistent example of a space X such that X has K(ω1, 2, 2)

but X ⊕X does not?

Note that the ccc in Ck(X) really only depends on the partial order of compact subsets

of X. To be a bit more precise we can define for every type t and space X the poset Pt with

conditions K = 〈K0, . . . , Kn〉 where each Ki ⊂ X is compact. The order <t can be defined

by K <t L if and only if Ki ⊃ Li for all i ≤ n. Once we know the structure of each of these

posets we can decide if Ck(X) has the ccc. To create a space X where Ck(X) is ccc but

Ck(X)2 is not ccc we will need to ensure that each Pt has some structure that allows this to

happen. All this motivates the following question.

Problem 113 Given a poset P can we find a space X such that for a given type t the poset

Pt is isomorphic to P , or at least P embeds in Pt?

6.1.3 Sequential density

Problem 114 Is it true that the product of less than q many sequentially separable spaces

is sequentially separable?

Problem 115 Is there a consistent example of a space X, such that Cp(X) is strongly

sequentially separable, not Frechet–Urysohn and RX is not strongly sequentially separable?
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Problem 116 Is it possible to find spaces X, Y such that Ck(X)and Ck(Y ) are strongly

sequentially separable but Ck(X) × Ck(Y ) is not strongly sequentially separable?

Problem 117 Is it possible to find a space X such that Ck(X) is strongly sequentially sep-

arable but Ck(X)2 is not strongly sequentially separable?

Problem 118 Is it possible in ZFC to find a space X such that Ck(X) is strongly sequentially

separable but Ck(X) is not Frechet–Urysohn?
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